Thermoplastic Polyolefin (TPO) and Vulcanizate (TPV) Elastomers 01/02S1

June 2002

Nexant, Inc./Chem Systems 44 South Broadway

White Plains, New York 10601-4425 Telephone (914) 609-0300 Facsimile (914) 609-0399 www.chemsystems.com

TABLE OF CONTENTS

1	SUMMARY	1
	A. OVERVIEW OF THERMOPLASTIC ELASTOMERS (TPEs)	1
	B. THERMOPLASTIC POLYOLEFINICS AND VULCANIZATES	4
	C. CHEMISTRY	8
	1. In-Situ TPOs	8
	2. TPO Production via Compounding	11
	3. TPV	12
	4. EPDM	13
	D. TRENDS IN TECHNOLOGY	14
	E. ECONOMICS	16
	F. END-USES FOR TPOs	18
	G. END-USES FOR TPVs	20
	H. REGIONAL TPO DEMAND	22
	I. REGIONAL TPV DEMAND	23
	J. GLOBAL TPO/TPV SUPPLY	25
II	INTRODUCTION	27
	A. OVERVIEW OF THERMOPLASTIC ELASTOMERS (TPEs)	27
	1. Background	27
	2. Properties and Performance: Definitions	33
	3. Definition of TPE Polymers	34
	4. Product Life Cycle Maturity	39
	5. TPE Performance Comparison	39
	6. Intermaterial Substitution	40
	B. THERMOPLASTIC POLYOLEFINICS AND VULCANIZATES	49
III	TECHNOLOGY	54
	A. CHEMISTRY	54
	1. In-Situ TPOs	54
	2. TPO Production via Compounding	58
	3. TPV	60
	4. EPDM	63
	 A. CHEMISTRY 1. <i>In-Situ</i> TPOs 2. TPO Production via Compounding 3. TPV 4. EPDM 	

TABLE OF CONTENTS (Continued)

	B PROCESS DESIGN	66
		66
	2 NOVOLEN	71
		71
	4 TPO Compounding	70
	4. TPO Compounding	79
	5. TPV Compounding	85
	6. EPDM Solution Process Design	86
	C. TRENDS IN TECHNOLOGY	95
IV	PROCESS ECONOMICS	97
	A. BASIS	97
	B. INVESTMENT	99
	C. ECONOMICS	100
	D. RAW MATERIAL SENSITIVITY	112
	E. SENSITIVITY TO INTEGRATION	115
v	COMMERCIAL ANALYSIS	121
	A. END-USES FOR TPOs	121
	B. END-USES FOR TPVs	124
	C. REGIONAL TPO DEMAND	128
	D. REGIONAL TPV DEMAND	129
	E. GLOBAL TPO/TPV SUPPLY	131
REF	ERENCES	133
GLC	DSSARY	134
APPENDIX		135

TABLES

Table I.B.1	Physical Properties of Selected Propylene Containing	
	Thermoplastics	6
Table I.B.2	Properties of Thermoplastic Vulcanizates	7
Table I.E.1	Cost Comparison of 30 Percent Ethylene TPOs from <i>In-Situ</i> and	
	Compounding Processes	17
Table I.H.1	Regional Demand for TPOs	22
Table I.I.1	Regional Demand for TPVs	24
Table I.J.1	Major TPO/TPV Producers	26
Table II.A.1	Hard Polymer/Elastomer Blend Combinations	31
Table II.A.2	Comparison of TPO/TPV Properties Versus Selected	
	Competing Materials	37
Table II.A.3	Competitive Grid	44
Table II.B.1	Physical Properties of Selected Propylene Containing	
	Thermoplastics	51
Table II.B.2	Properties of Thermoplastic Vulcanizates	52
Table III.A.1	EPDM Vulcanizing and Compounding Techniques	61
Table III.A.2	EPDM Diene Characteristics	63
Table III.A.3	Typical Catalyst Used in EPR and EPDM Copolymerization	65
Table III.B.1	Reaction Cycle Time Versus Process Variables	94
Table IV.B.1	USGC In-Situ TPO Production Capital Cost Estimates	99
Table IV.B.2	USGC Compounded TPO and TPV Production Capital	
	Cost Estimates	100
Table IV.C.1	Cost Comparison of 30 Percent Ethylene TPOs From	
	In-Situ and Compounding Processes	101
Table IV.C.2	Cost of Production Estimate for: TPO Compounded Blend	
	Process: 70mm Twin Screw	103
Table IV.C.3	Cost of Production Estimate for: In-Situ TPO	
	Process: SPHERIPOL – Bulk, Gas Phase	104

TABLES (Continued)

Table IV.C.4	Cost of Production Estimate for: In-Situ TPO	
	Process: Novolen – Gas Phase	105
Table IV.C.5	Cost of Production Estimate for: In-Situ TPO	
	Process: Catalloy – Gas Phase	106
Table IV.C.6	Cost of Comparison of 38 Percent Ethylene TPO and	
	TPV Grades	107
Table IV.C.7	Cost of Production Estimate for: In-Situ TPO	
	Process: Catalloy – Gas Phase	109
Table IV.C.8	Cost of Production Estimate for: TPO Compounded Blend	
	Process: 70mm Twin Screw	110
Table IV.C.9	Cost of Production Estimate for: TPV by Dynamic Vulcanization	
	Process: 70mm Twin Screw Compounder	111
Table IV.E.1	Cost of Production Estimate for: EPDM – 60.0/35.5/4.5	
	Process: Solution	116
Table IV.E.2	Cost Comparison of Integrated Versus Non-Integrated TPO/TPV	
	Production	117
Table IV.E.3	Cost of Production Estimate for: TPO Compounded Blend	
	Process: 70mm Twin Screw	119
Table IV.E.4	Cost of Production Estimate for: TPV by Dynamic Vulcanization	
	Process: 70mm Twin Screw Compounder	120
Table V.B.1	Example Applications for TPV's	126
Table V.B.2	Intermaterial Summary	127
Table V.C.1	Regional Demand for TPOs	128
Table V.D.1	Regional Demand for TPVs	130
Table V.E.1	Major TPO/TPV Producers	132

FIGURES

Figure I.A.1	Elastomer Industry Growth	2
Figure I.C.1	Technology/Market Matrix	10
Figure I.E.1	Cost Comparison of 30 Percent Ethylene TPOs	17
Figure I.F.1	Global TPO Demand by End-Use, 2001	19
Figure I.G.1	Global TPV Demand by End-Use, 2001	21
Figure I.H.1	Global TPO Consumption by Region	23
Figure I.I.1	Global TPV Consumption by Region	24
Figure II.A.1	Elastomer Industry Growth	28
Figure II.A.2	Phase Arrangement in Crystalline Block Copolymers	30
Figure II.A.3	Phase Arrangement of Polymer/Elastomer Blends	32
Figure II.A.4	TPE Product Life Cycle	41
Figure II.A.5	Global TPE Scope: Demand Versus Growth	42
Figure II.A.6	Thermoplastic Elastomers – Performance Curve	43
Figure II.A.7	TPE Performance Regimes	43
Figure II.A.8	Functional Determinants of Rubber Products	47
Figure II.A.9	Replacement of Competing Material by TPE Growth	48
Figure III.A.1	Polypropylene Structure	56
Figure III.A.2	Technology/Market Matrix	58
Figure III.A.3	Chemical Formulae for Ethylidene Norbornene and 1,4-Hexadiene	62
Figure III.B.1	Polypropylene Process SPHERIPOL Process (Loop Reactor)	67
Figure III.B.2	SPHERIPOL Process Copolymer Reactors and Monomer	
	Recovery	68
Figure III.B.3	Typical Polypropylene Process Pelletizing	69
Figure III.B.4	Novolen Polypropylene Gas-Phase Process	73
Figure III.B.5	Novolen Polypropylene Process Pelletizing	74
Figure III.B.6	Key Principle of Catalloy is "In-Granule Reaction"	77
Figure III.B.7	Basell Fluidized Bed Catalloy Process Reactor System	80
Figure III.B.8	Schematic of Banbury [®] Mixer	81
Figure III.B.9	Cross Section of a Typical Single-Screw Extruder	82
Figure III.B.10	Schematic of a Continuous Processor	83
Figure III.B.11	Twin-Screw Geometry of a Co-Rotating System	84

FIGURES (Continued)

Figure III.B.12	Plant for Compounding TPOs	87
Figure III.B.13	Feed Preparation Section	88
Figure III.B.14	Process Flowsheet EPDM Solution Process Polymerization	89
Figure III.B.15	EPDM Polymer Recovery Section	90
Figure III.B.16	Solvent Recovery Section	91
Figure IV.C.1	Cost Comparison of 30 Percent Ethylene TPOs	102
Figure IV.C.2	Cost Comparison of 38 Percent Ethylene TPO/TPV Grades	108
Figure IV.D.1	Effect of Polymer Grade Propylene Cost on In-Situ TPO	
	Economics	113
Figure IV.D.2	Effect of Ethylene Cost on In-Situ TPO Economics	114
Figure IV.E.1	Comparison of Integrated Versus Non-Integrated TPO/TPV	
	Production Costs	118
Figure V.A.1	Global TPO Demand by End-Use, 2001	122
Figure V.B.1	Global TPV Demand by End-Use, 2001	125
Figure V.C.1	Global TPO Consumption by Region	129
Figure V.D.1	Global TPV Consumption by Region	130