High Temperature Thermoplastic Nylons

May 2002

Nexant, Inc./Chem Systems

44 South Broadway
White Plains, New York 10601-4425
Telephone (914) 609-0300 Facsimile (914) 609-0399
www.chemsystems.com

TABLE OF CONTENTS

		Page
I	SUMMARY	1
	A. INTRODUCTION	1
	B. CHEMISTRY	3
	1. Nylon 4,6	4
	2. Polyphthalamide Chemistries	6
	C. ECONOMICS	10
	D. END-USES	12
	E. DEMAND	14
	F. SUPPLY	16
II	INTRODUCTION	17
	A. HIGH TEMPERATURE THERMOPLASTIC NYLONS	17
	B. OVERVIEW OF THE ENGINEERING THERMOPLASTICS INDUSTRY	26
Ш	TECHNOLOGY	36
	A. CHEMISTRY	36
	1. Nylon 4,6	36
	2. Polyphthalamide Chemistries	40
	Other High Temperature Nylon Chemistries	44
	4. Nylon 6,6	45
	B. PROCESS DESIGN	47
	 Nylon 4,6 Continuous Process 	47
	2. Nylon 6,T/6,I/6,6 Continuous Process	52
	3. Nylon 6T/612 Batch Process	53
	4. Nylon 6,6 Continuous Process	56
	(a) Salt Preparation	56
	(b) Polymerization	58
	C. TRENDS IN HIGH TEMPERATURE NYLON TECHNOLOGY	60
IV	PROCESS ECONOMICS	61
	A. BASIS	61
	B. INVESTMENT	63
	C. ECONOMICS	64

TABLE OF CONTENTS (Continued)

	Page	
D. RAW MATERIAL SENSITIVITY	70	
E. SENSITIVITY TO SCALE	73	
V COMMERCIAL ANALYSIS	79	
A. END-USES	79	
B. DEMAND	82	
C. SUPPLY	85	
REFERENCES	86	
GLOSSARY		
APPENDIX		
PERP TITLE INDEX		

TABLES

		Page
Table I.A.1	High Temperature Polyamide Resins	2
Table I.C.1	Cost Comparison of High Temperature Nylons	11
Table I.D.1	High Temperature Nylon End-Users in Other Applications	13
Table I.E.1	Global Demand Summary for High Temperature Nylons	14
Table I.F.1	Global High Temperature Nylon Compounding Capacity	16
Table II.A.1	High Temperature Polyamide Resins	18
Table II.A.2	Properties of Selected High Temperature Nylons Versus Nylon 6,6	19
Table II.B.1	Performance Factors (Neat Resin) of Interpolymer Competition	31
Table II.B.2	Properties of Selected Glass Filled Engineering Thermoplastics	32
Table IV.B.1	USGC Nylon 6 and 6,6 Production Capital Cost Estimates	63
Table IV.C.1	Cost Comparison of High Temperature Nylons	64
Table IV.C.2	Cost of Production Estimate for: Nylon 4,6	
	Process: DSM – Continuous; Integrated with 1,4-Diaminobutane	
	Production	66
Table IV.C.3	Cost of Production Estimate for: Nylon 6T/6I/66 (AMODEL)	
	Process: Amoco – Continuous	67
Table IV.C.4	Cost of Production Estimate for: Nylon 6T/612	
	Process: Batch	68
Table IV.C.5	Cost of Production Estimate for: Nylon 6/6	
	Process: Continuous	69
Table IV.E.1	Cost of Production Estimate for: Nylon 4/6	
	Process: DSM – Continuous; Integrated with 1,4-Diaminobutane	
	Production	74
Table IV.E.2	Cost of Production Estimate for: Nylon 6T/6I/66 (AMODEL)	
	Process: Amoco – Continuous	75
Table IV.E.3	Cost of Production Estimate for: Nylon 6T/612	
	Process: Batch	76
Table IV.E.4	Cost Comparison and Scale Sensitivity of High Temperature Nylons	s 77
Table V.A.1	High Temperature Nylon End-Use Applications in Electrical/	
	Electronics	80

TABLES (Continued)

		Page
Table V.A.2	High Temperature Nylon End-Use Applications in Automotive	81
Table V.A.3	High Temperature Nylon End-Use in Other Applications	82
Table V.B.1	Global Demand Summary for High Temperature Nylons	83
Table V.C.1	Global High Temperature Nylon Compounding Capacity	85

FIGURES

		Page
Figure I.C.1	Cost Comparison of High Temperature Nylons	11
Figure I.D.1	Global HTN Consumption by End-Use, 2001	13
Figure I.E.1	Global High Temperature Nylon Demand by Region, 2001	14
Figure I.E.2	Global HTN Consumption by Region	15
Figure II.A.1	High Heat Properties of Engineering Plastics	21
Figure II.A.2	Impact Resistance of 30% Glass Fiber Reinforced	
	Engineering Plastics	22
Figure II.A.3	High Temperature Polymer Resistance Against IR Reflow	
	Soldering	22
Figure II.A.4	Comparison of Coefficient of Thermal Expansion for Selected	
	High Temperature Polymers	23
Figure II.A.5	Property Comparison of Selected Semi-Crystalline Polymers	24
Figure II.A.6	Comparison of Mold Shrinkage of High Temperature Polymers	25
Figure II.A.7	High Temperature Polymer Flow Characteristics	25
Figure II.B.1	Engineering Thermoplastics Price/Performance	27
Figure II.B.2	Competition Among the Engineering Thermoplastics	28
Figure II.B.3	Primary Engineering Thermoplastics End-Use Market	
	Requirements	29
Figure II.B.4	Properties of Composite Materials	32
Figure III.A.1	Formation of Pyrrolidinyl End Groups	40
Figure III.B.1	Succinonitrile Synthesis and Hydrogenation	48
Figure III.B.2	Nylon 4,6 Salt Preparation	49
Figure III.B.3	Nylon 4,6 Polymerization	50
Figure III.B.4	Continuous Process for Polyphthalamide	54
Figure III.B.5	Batch Nylon 6T/612 Process	55
Figure III.B.6	Continuous Nylon 6,6 AH Salt Preparation	57
Figure III.B.7	Nylon 6,6 Continuous Polymerization Pelletizing, and Drying	59
Figure IV.C.1	Cost Comparison of High Temperature Nylons	65
Figure IV.D.1	Effect of HMDA Cost on High Temperature Nylon Resin Economics	71

FIGURES (Continued)

		Page
Figure IV.D.2	Effect of Dodecanedioic Acid Cost on Nylon 6T/612 Resin	
	Economics	72
Figure IV.E.1	Cost and Scale Comparisons of High Temperature Nylon	
	Polymerization Processes	78
Figure V.A.1	Global HTN Consumption by End-Use, 2001	80
Figure V.B.1	Global High Temperature Nylon Demand by Region, 2001	83
Figure V.B.2	Global HTN Consumption by Region	84