Xylenes 01/02-7

June 2002

TABLE OF CONTENTS

		Page
ı	SUMMARY	1
	A. INTRODUCTION	1
	B. XYLENES PRODUCTION	1
	Catalytic Reforming	1
	2. Toluene Disproportionation (TDP)	2
	(a) Conventional Process	3
	(b) Selective TDP Processes	4
	3. Toluene Methylation	5
	4. Other Sources	6
	C. XYLENES RECOVERY	7
	1. Introduction	7
	2. <i>para-</i> Xylene	9
	(a) Adsorption	9
	(b) Crystallization	10
	3. ortho-Xylene	11
	4. meta-Xylene	12
	D. COST OF PRODUCTION	12
	E. GLOBAL SUPPLY	15
	F. GLOBAL DEMAND	17
II	COMMERCIAL TECHNOLOGY	18
	A. INTRODUCTION	18
	B. XYLENES PRODUCTION	19
	Catalytic Reforming	19
	2. Toluene Disproportionation (TDP)	23
	(a) Conventional Process	23
	(b) Selective TDP Processes	27
	(1) ExxonMobil's PxMax SM Process	28
	(2) UOP's PX Plus Process	31
	(3) ExxonMobil's MSTDP Process	33
	(c) Recovery from Selective TDP Processes	34
	(1) BEFS PROKEM's Melt Static Crystallization Process	34
	(2) Sulzer Chemtech's Heat Pump Crystallization System	35

TABLE OF CONTENTS (Continued)

			Page
		(3) The Badger/Niro Crystallization Process	36
	3.	Toluene Methylation	36
	4.	Other Sources	40
C.	XY	LENES RECOVERY	41
	1.	Introduction	41
	2.	para-Xylene	45
		(a) Adsorption	45
		(1) Chemistry	45
		(2) Parex (UOP) Process Description	46
		(3) IFP's Eluxyl (Adsorption) Process	49
		(b) Crystallization	52
		(1) Chemistry	52
		(2) Process Description	53
		(c) Isomerization	56
	3.	ortho-Xylene	58
	4.	meta-Xylene	59
		(a) UOP MX Sorbex [™] Process	59
		(b) Mitsubishi Gas Chemical Process	64
		(c) Sulzer's New Process to Recover meta-Xylene	65
	5.	Ethylbenzene	68
D.	PF	ROCESS ECONOMICS	70
	1.	Basis	70
		(a) Pricing Basis	70
		(b) Investment Basis	71
		(c) Cost of Production Basis	71
	2.	Investment	72
	3.	Cost of Production	73
		(a) Adsorption or Crystallization with Isomerization	74
		(b) Toluene Disproportionation	77
		(c) Toluene Methylation	85
		(d) meta-Xylene	85

TABLE OF CONTENTS (Continued)

		Page
	4. Sensitivity of para-Xylene Economics	85
	(a) Benzene	89
	(b) Toluene	92
	(c) Mixed Xylenes	93
	(d) C ₉ Aromatics	94
	(e) ortho-Xylene	95
	(f) Methanol	96
	(g) Five Year Average Pricing	97
	(h) Total Cost of Production	98
II	DEVELOPING TECHNOLOGY	100
	A. INTRODUCTION	100
	B. para-XYLENE	101
	Chevron Phillips	101
	2. ExxonMobil	101
	3. IFP (Axens)	102
	4. UOP	103
	C. meta-XYLENE	104
	D. DISPROPORTIONATION, TRANSALKYLATION AND METHYLATION	106
	Chevron Phillips	106
	2. ExxonMobil	106
	3. IFP (Axens)	108
	4. Toray	108
	5. UOP	109
V	COMMERCIAL ANALYSIS	111
	A. APPLICATIONS	111
	1. Background	111
	2. Mixed Xylenes	111
	3. para-Xylene	113
	4. ortho-Xylene	114
	5. <i>meta-</i> Xylene	116

TABLE OF CONTENTS (Continued)

	Page
B. GLOBAL para-XYLENE SUPPLY	117
C. GLOBAL para-XYLENE DEMAND	121
REFERENCES	123
APPENDIX I	126
APPENDIX II	
PERP TITLE INDEX	

TABLES

		Page
Table I.E.1	Regional para-Xylene Production	16
Table I.F.1	Regional para-Xylene Consumption	17
Table II.A.1	Licensors of Aromatics Technology	19
Table II.B.1	Reactor Operating Conditions of MSTDP and PxMax	30
Table II.C.1	Composition of Mixed Xylenes Lean in ortho-Xylene	59
Table II.C.2	C ₈ Aromatic Distribution in MX Sorbex Feed	61
Table II.C.3	Merchant meta-Xylene Specifications	63
Table II.C.4	Composition of Mixed Xylenes Lean in Ethylbenzene	68
Table II.D.1	Price Basis	70
Table II.D.2	Utilities Basis	71
Table II.D.3	para-Xylene Investment Estimates	73
Table II.D.4	Cost of Production Estimate for: para-Xylene	
	Process: Adsorption/Isomerization (EB Isomerization)	75
Table II.D.5	Cost of Production Estimate for: para-Xylene	
	Process: Adsorption/Isomerization (EB Dealkylation)	76
Table II.D.6	Cost of Production Estimate for: para-Xylene	
	Process: Crystallization/Isomerization (EB Dealkylation)	78
Table II.D.7	Cost of Production Estimate for: para-Xylene	
	Process: Crystallization/Isomerization (EB Isomerization)	
	w/ <i>ortho</i> -Xylene By-product	79
Table II.D.8	Cost of Production Estimate for: para-Xylene	
	Process: Selective Toluene Disproportionation Followed by	
	One-Stage Crystallization	80
Table II.D.9	Cost of Production Estimate for: para-Xylene	
	Process: PxMax followed by Melt Static Crystallization	81
Table II.D.10	Cost of Production Estimate for: para-Xylene	
	Process: Conventional TDP followed by Adsorption/Isomerization	82
Table II.D.11	Cost of Production Estimate for: para-Xylene	
	Process: Conventional TDP – Toluene/C ₉ + Aromatics Feeds	
	followed by Adsorption/Isomerization	83

TABLES (Continued)

		Page
Table II.D.12	Cost of Production Estimate for: para-Xylene	
	Process: Conventional TDP - C9+ Aromatics Feed Followed by	
	Adsorption/Isomerization	84
Table II.D.13	Cost of Production Estimate for: para-Xylene	
	Process: Toluene Methylation w/Crystallization Recovery Secti	on 86
Table II.D.14	Cost of Production Estimate for: meta-Xylene	
	Process: UOP MX Sorbex	87
Table III.C.1	Results from U.S. Patent 6,207,871	106
Table IV.B.1	Global para-Xylene Capacity Breakdown, 2001	118-120
Table IV.B.2	Regional para-Xylene Production	121
Table IV.C.1	Regional para-Xylene Consumption	121
Appendix Tab	le:	
Table A.1	Toluene Methylation Process Equipment Specification and	
	Cost Estimate	126

FIGURES

		Page
Figure I.C.1	Xylenes Recovery Processes	8
Figure I.D.1	para-Xylene Cash Cost of Production	13
Figure I.D.2	para-Xylene Cash Cost of Production	14
Figure I.D.3	para-Xylene Full Cash Cost of Production	15
Figure I.E.1	Regional para-Xylene Capacity Breakdown, 2001	16
Figure I.F.1	Regional para-Xylene Capacity and Demand	17
Figure II.B.1	Semi-Regenerative Reformer Process Flow Diagram	21
Figure II.B.2	Continuous Catalytic Reforming Process Flow Diagram	22
Figure II.B.3	Toluene Disproportionation Transalkylation Typical Flowsheet	26
Figure II.B.4	para-Xylene Production via PxMax Process Flow Diagram	29
Figure II.B.5	PX Plus Process Flow Diagram	32
Figure II.B.6	para-Xylene by Toluene Methylation	38
Figure II.C.1	Xylenes Recovery Processes	42
Figure II.C.2	Equilibrium Concentrations for C ₈ - Aromatic Compounds	44
Figure II.C.3	para-Xylene Production via UOP Parex/Isomar Process	47
Figure II.C.4	Eluxyl Process Flow Diagram	51
Figure II.C.5	para-Xylene Production via Crystallation/Isomerization	54
Figure II.C.6	Xylenes Isomerization: UOP Isomar Process	57
Figure II.C.7	ortho-Xylene from Mixed Xylenes by Fractionation	60
Figure II.C.8	meta-Xylene Production via UOP MX-Sorbex Process	62
Figure II.C.9	meta-Xylene via MGC's HF/BF ₃ Extraction Process	66
Figure II.C.10	Sulzer's meta-Xylene Process	67
Figure II.C.11	Ethylbenzene Extraction by Superfractionation	69
Figure II.D.1	para-Xylene Cash Cost of Production	74
Figure II.D.2	Price History ortho- and para-Xylene	88
Figure II.D.3	Price History Aromatics	89
Figure II.D.4	Effect of Benzene Pricing on Xylenes Adsorption/	
	Isomerization Economics	90
Figure II.D.5	Effect of Benzene Price on TDP Economics	91
Figure II.D.6	Effect of Toluene Price on TDP Economics	92
Figure II.D.7	Effect of Toluene Price on Toluene Methylation Economics	93

FIGURES (Continued)

		Page
Figure II.D.8	Effect of Mixed Xylene Price on para-Xylene Economics	94
Figure II.D.9	Effect of C ₉ Aromatic Price on TDP Economics	95
Figure II.D.10	Effect of ortho-Xylene Price on Xylenes Isomerization Economics	96
Figure II.D.11	Effect of Methanol Price on Toluene Methylation Economics	97
Figure II.D.12	para-Xylene Cost of Production	98
Figure II.D.13	para-Xylene Cost of Production	99
Figure III.A.1	U.S. Patent Awards, 1998-2001	100
Figure III.C.1	ExxonMobil meta-Xylene Progress	105
Figure IV.B.1	Regional <i>para</i> -Xylene Capacity Breakdown, 2001	120
Figure IV.C.1	Global para-Xylene Capacity and Consumption	122