Detergent Alcohols 98/9955

January 2002

TABLE OF CONTENTS

I	EXE	CUTIVE SUMMARY	1
	Α.	SYNOPSIS	1
	В.	INTRODUCTION	2
		1. Synthetic Alcohols	2
	~	2. Natural Alcohols	3
	C.	PROCESS ECONOMICS	5
	D.		8
	E.	STRATEGICISSUES	10
П	INTF	RODUCTION	12
	Α.	AIM OF THE STUDY	12
	В.	OVERVIEW	12
		1. Direct Hydration	13
		2. Plasticizer Range Oxo Alcohols	13
		3. Detergent Range	14
		(a) Synthetic Routes Based on Petrochemical Feedstocks	14
	\sim		10
	С. П		10
	D.	1 Capital Cost Estimation	17
		(a) Battery Limits Investment	17
		(b) Offsites Investment	18
		(c) Contractor charges, typically 15 to 25 percent of	
		installed BL and OS costs	19
		(d) Project Contingency Allowance	19
		(e) Working Capital	20
		(f) Other Project Costs	20
		Start-Up/Commissioning Costs	20
		(2) Miscellaneous Owner's Costs	20
		2. Cost of Production Elements	21
		(a) Battery Limits	21
		(b) Production Costs	22
		(1) Labor	22
	SYN	THETIC ALCOHOL PROCESS TECHNOLOGY	24
	Α.	FEEDSTOCKS REVIEW	24
		1. Introduction	24
		2. Alpha Olefins	24
		3. Linear Internal Olefins	25

TABLE OF CONTENTS (Continued)

Page

	4.	Fischer Tropsch Derived Olefins	26
	5.	Olefins Derived from n-Paraffins	27
		(a) Process Concept	27
В.	ALC	OHOLS PRODUCED VIA OLEFIN HYDROFORMYLATION	29
	1.	Process Chemistry	29
		(a) Overview	29
		(b) Oxo Catalysts	30
		(c) Classic Unmodified Cobalt Catalysts	31
		(d) Modified Cobalt Catalysts (Shell)	33
		(e) Rhodium Catalysts for Higher Oxo Alcohol Production	34
	2.	Oxo Alcohol Process Design and Engineering	34
		(a) Conventional Oxo (Unmodified Cobalt) Alcohol Process	34
		(b) Modified Oxo (Shell's Modified Cobalt) Process	37
	3.	Ziegler Linear Primary Alcohols	40
		(a) Overview	40
		(b) Process Chemistry	41
		(c) ALFOL [™] Process Description	42
	4.	Modified Ziegler Process (BP)	44
ALC	OHO	LS DERIVED FROM NATURAL SOURCES	47
Α.	OVE	ERVIEW	47
В.	NAT	URAL OIL FEEDSTOCKS	48
C.	PRC	CESS DESCRIPTION	50
	1.	Overview	50
	2.	Methyl Ester Route (Methanolysis)	51
		(a) Pre-Esterification	51
		(b) Methanolysis	52
		(c) Glycerol Purification	54
		(d) Methanol Purification	54
		(e) Light Fatty Acid Production (Optional Equipment)	55
	3.	Fatty Acid Route (Hydrolysis)	56
		(a) Hydrolysis (Fat Splitting)	56
		(b) Distillation and Purification	58
		(c) Hydrogenation of Double Bonds	59
		(d) Glycerol Purification	60
		(e) Hydrogenolysis of Methyl Esters or Fatty Acids	62
		(f) Hydrogenolysis	64
		(g) Catalyst and Product Separation	67
		(h) Alcohol Purification	67

IV

TABLE OF CONTENTS (Continued)

V	PROC	ESS TECHNOECONOMICS	69
	A. (OVERVIEW	69
		1. Basis	69
		2. Feedstock Pricing	69
	•	3. Manpower 4. Other Presses	70
	R		70
	D	1 Oxo Alcohols	71
		(a) Conventional Oxo (Unmodified Cobalt)	71
		(b) Modified Oxo (Ligand Modified Cobalt)	71
		2. Žiegler Alcohols	76
	C. /	ALCOHOL DERIVED FROM NATURAL OILS	78
	D. 3	SUMMARY AND SENSITIVITIES	83
VI	COMM	IERCIAL REVIEW	87
	A. I	MARKET FACTORS	87
	В. І	PRODUCTION OVERVIEW	90
	C.	NTER-REGIONAL TRADE PATTERNS	93
	D	TRI-REGIONAL MARKET ANALYSIS	94
		1. United States	94
		(a) Consumption	94
		(b) Production (c) Supply/Demand Analysis	96
		Western Europe	97
	4	(a) Consumption	98
		(b) Production	100
		(c) Supply/Demand Analysis	101
		3. Japan	102
		(a) Consumption	102
		(b) Production	104
		(c) Supply/Demand Analysis	104
	E. '	VALUE CHAIN/INTEGRATION	106
VII	STRA	TEGIC ISSUES	107
	A. I	MARKET SHARE ISSUES	107
	В. `	VALUE ADDED POTENTIAL	110
Α	PPENDI	x	113
Р	ERP TIT	LE INDEX	118

TABLES

Table I.C.1	Cost Of Production Summary For Synthetic And Natural Higher Alcohols	6
Table V.A.1	Price Assumptions	69
Table V.A.2	Utility Price Assumptions	70
Table V.B.1	Cost Of Production Estimate For: Synthetic Detergent Alcohols Process: Olefin Hydroformaylation/Hydrogenation (Unmodified Cobalt)	72
Table V.B.2	Cost Of Production Estimate For: Synthetic Detergent Alcohols Process: Olefin Hydroformaylation/Hydrogenation	73
Table V.B.3	Cost Of Production Estimate For: Synthetic Detergent Alcohols Process: Shell Olefin Hydroformaylation/Hydrogenation	74
Table V.B.4	Cost Of Production Estimate For: Synthetic Detergent Alcohols Process: Shell Olefin Hydroformaylation/Hydrogenation	74
	(Modified Cobalt)	75
Table V.B.5	Cost Of Production Estimate For: Ziegler Alcohols Process: Alfol Process	77
Table V.C.1	Cost Of Production Estimate For: Natural C ₈ -C ₁₈ Alcohols	70
Table V.C.2.	Cost Of Production Estimate For: Natural C ₈ -C ₁₈ Alcohols	79
	Process: Methyl Ester Route	80
Table V.C.3	Process: Fatty Acid Route	81
Table V.C.4	Cost Of Production Estimate For: Natural C ₈ -C ₁₈ Alcohols Process: Fatty Acid Route	82
Table V.D.1	Cost Of Production Summary For Synthetic And Natural Higher Alcohols	84
Table VI.D.1	U.S. Detergent Range Alcohol Capacity, End 2000	96
Table VI.D.2	United States Supply/Demand Balance For Detergent Range Alcohols, 1990-2015	97

TABLES (Continued)

Table VI.D.3	West European Detergent Range Alcohol Capacity, End 2000	101
Table VI.D.4	West European Supply/Demand Balance For Detergent	101
	Range Alcohols, 1990-2015	
Table VI.D.5	Japanese Detergent Range Alcohol Capacity, End 2000	104
Table VI.D.6	Japanese Supply/Demand Balance For Detergent Range	105
	Alcohols, 1990-2015	

CHEM SYSTEMS

FIGURES

Figure I.B.1 Figure I.B.2 Figure I.C.1 Figure I.C.2 Figure I.D.1 Figure I.D.2 Figure I.D.3	Petrochemical Routes To Synthetic Alcohols Natural Oil Components By Carbon Number Comparative Alcohol Production Costs Alcohol Cash Cost – Feedstock Price Sensitivity Global Detergent Alcohol Consumption By End-Use, Year 2000 Global Detergent Alcohols Supply/Demand Balance, 1990-2015 Global Detergent Alcohols Net Trade Balance By Region, 1990-2015 Detergent Alcohol Integration	3 4 5 7 8 9 9
Figure I.E.2	Value Added Potential	11
Figure II.B.1	Petrochemical Routes To Synthetic Detergent Range Alcohols	15
Figure III.A.1 Figure III.A.2 Figure III.A.3 Figure III.A.4 Figure III.B.1	BP And Chevron Phillips LAO Distributions Shell LAO/LIO Distribution Sasol LAO/Branched Olefin Distribution Synthetic Alcohols From N-Paraffins Conceptual Integration Mechanism Of Cobalt-Catalyzed Hydroformylation	25 26 27 28 32
Figure III.B.2	Conventional Detergent – Range Oxo Alcohols (Unmodified Cobalt Catalysis)	35
Figure III.B.3 Figure III.B.4 Figure III.B.5	Modified Detergent Range Oxo Alcohols (Shell's Modified Cobalt Catalyst) "Peaked" Ziegler Alcohol Distribution Simplified Alfol Process For Alpha Alcohols	38 42 45
Figure IV.B.1 Figure IV.C.1 Figure IV.C.2 Figure IV.C.3 Figure IV.C.4	Natural Oil Components By Carbon Number Methyl Esters Via Methanolysis Of Coconut Oil Fatty Acids Via Hydrolysis Of Coconut Oil Recirculation/Venturi Reactor Fatty Alcohols Via Hydrogenolysis Of Fatty Acids	49 53 57 61 65
Figure V.D.1 Figure V.D.2	Comparative Alcohol Production Costs Alcohol Cash Cost – Feedstock Price Sensitivity	83 86

FIGURES (Continued)

Figure VI.A.1 Figure VI.A.2	Global Detergent Alcohol Consumption By End-Use, Year 2000 Global Detergent Alcohols Consumption By End-Use, 1990-2015	88 88
Figure VI.A.3	Global Detergent Alcohols Consumption By Region, 1990-2015	89
Figure VI.B.1	Global Detergent Alcohols Production By Region, 1990-2015	91
Figure VI.B.2	Global Detergent Alcohols Supply/Demand Balance, 1990-2015	92
Figure VI.C.1	Global Detergent Alcohols Net Trade Balance By Region, 1990-2015	93
Figure VI.D.1	U.S. Detergent Alcohols End-Use Breakdown, 2000	94
Figure VI.D.2	United States Detergent Alcohols Consumption By End-Use, 1990-2015	95
Figure VI.D.3	United States Detergent Range Alcohol Supply/Demand Balance, 1990-2015	98
Figure VI.D.4	West European Detergent Alcohols End-Use Breakdown, 2000	99
Figure VI.D.5	West European Detergent Alcohols Consumption By End-Use 1990-2015	100
Figure VI.D.6	West European Detergent Range Alcohol Supply/Demand Balance, 1990-2015	102
Figure VI.D.7	Japanese Detergent Alcohol Consumption By End-Use, 2000	103
Figure VI.D.8	Japanese Detergent Alcohols Consumption By End-Use, 1990-2015	103
Figure VI.D.9	Japanese Detergent Range Alcohol Supply/Demand Balance, 1990-2015	105
Figure VI.E.1	Detergent Alcohol Integration	106
Figure VII.A.1	Detergent Alcohols Capacity Share	107
Figure VII.A.2	Surfactant Capacity, 2000	108
Figure VII.A.3	Surfactant Price/Volume Exclusion Curve	109
Figure VII.B.1	Polyethylene Value Chain	110
Figure VII.B.2	Synthetic Alcohol Value Chain	111
Figure VII.B.3	Value Added Potential	112