Cost/Performance of Fuel Oxygenates 99/0053

September 2000

TABLE OF CONTENTS

			Page
i	A. B.	CUTIVE SUMMARY CURRENT LEGISLATIVE ENVIRONMENT IN THE U.S. SCOPE OF REPORT PHYSICAL AND BLENDING PROPERTIES OF FUEL	1 1 4
		OXYGENATES 1. Gasoline Blending Properties 2. Oxygenate Value (a) Volumetric Value	6 6 11 11
	E.	(b) Vapor Pressure (c) Octane Credit (d) Oxygen Credit COST/PERFORMANCE ASSESSMENT MTBE MARKET OUTLOOK 1. Background 2. U.S. MTBE Demand	11 13 13 14 16 16
		3. Global MTBE Demand	20
II	A.	ODUCTION CURRENT LEGISLATIVE ENVIRONMENT IN THE U.S. SCOPE OF REPORT	23 23 26
III	A. B.	GASOLINE BLENDING PROPERTIES OF FUEL OXYGENATES GASOLINE BLENDING PROPERTIES OXYGENATE VALUE 1. Volumetric Value 2. Vapor Pressure 3. Octane Credit 4. Oxygen Credit	28 28 33 33 33 35 35
IV	A.	MERCIAL PRODUCTION TECHNOLOGY ETHERS 1. Methyl Tertiary Butyl Ether (MTBE) 2. Ethyl Tertiary Butyl Ether (ETBE) 3. Tertiary Amyl Methyl Ether (TAME)/Tertiary Amyl Ethyl Ether (TAEE) (a) CDTECH (1) CDTAME (2) CDETHEROL (b) UOP	36 36 36 36 40 41 41 44 45

TABLE OF CONTENTS (Continued)

					Page
		4.	(a)	opropyl Ether (DIPE) ExxonMobil/CDTECH	48 49
	В.	ALC	` '	UOP	52 55
	Ъ.	1.		nanol	55
		2.	Etha		55
		3.		ropyl Alcohol (IPA)	61
		4.	-	iary Butyl Alcohol (TBA)	65
	C.	EST			71
		1.	Dime	ethyl Carbonate (DMC)	71
٧	ECC	NOMI	C AS	SSESSMENT	72
	A.	FEE	DST	OCK AND UTILITY PRICING	72
	B.	PRO		S ECONOMICS	73
		1.	Ethe		73
			(a)	Methyl Tertiary Butyl Ether (MTBE)	73
				(1) Cost of Production	73
			(b)	Ethyl Tertiary Butyl Ether (ETBE)	73
				(1) Cost of Production	73
			(0)	(2) Effects of Feedstock Prices	79
			(c)	Tertiary Amyl Methyl Ether (TAME) (1) Cost of Production	81 81
				(2) Effects of Feedstock Prices	81
			(d)	Diisopropyl Ether (DIPE)	84
			(u)	(1) Cost of Production	84
				(2) Effects of Feedstock Prices	86
		2.	Alco	` '	87
			(a)	Methanol	87
			()	(1) Cost of Production	87
			(b)	Èthanol	87
			` ,	(1) Cost of Production	87
				(2) Effects of Feedstock Prices	90
			(c)	Isopropyl Alcohol (IPA)	90
				(1) Cost of Production	90
				(2) Effects of Feedstock Prices	92
			(d)	Tertiary Butyl Alcohol (TBA)	93
				(1) Cost of Production	93
				(2) Effects of Feedstock Prices	95

TABLE OF CONTENTS (Continued)

			Page	
		 3. Ester (a) Dimethyl Carbonate (DM (1) Cost of Production (2) Effects of Feedstock 	97	
	C.	COST/PERFORMANCE EVALUAT 1. Total Capital Investment 2. Cash Cost of Production 3. Octane Value 4. Concluding Remarks	ION 100 100 103 108 110	
VI		BE MARKET OUTLOOK	113	
	А. В.	BACKGROUND	113 TNDS	
	D.	GLOBAL GASOLINE MARKET TRE 1. Gasoline Demand	ENDS 114 114	
		Use Of Lead Additives In Gase		
		3. MTBE Use In Gasoline	114	
	C.	U.S. MTBE DEMAND	116	
		U.S. MTBE SUPPLY	119	
		U.S. MTBE SUPPLY/DEMAND BAL		
	F.	GLOBAL MTBE SUPPLY/DEMAND		
		 Demand Supply 	122 123	
		 Supply Supply/Demand Balance 	128	
		о. Сарр.у, 2 отната 2 апатос	,	
	REF	132		
	APPENDIX			
	PER	RP TITLE INDEX	138	

TABLES

		Page
Table I.C.1 Table I.C.2	Physical and Blending Properties of Fuel Oxygenates – Ethers Physical and Blending Properties of Fuel Oxygenates –	7-8
	Alcohols and Ester	9-10
Table I.D.1	Cost/Performance Comparison of Fuel Oxygenates	15
Table I.E.1	U.S. Oxygenate Supply/Demand Balance	18
Table I.E.2	U.S. MTBE/TAME Supply/Demand Balance	20
Table I.E.3	Global MTBE Demand	21
Table III.A.1 Table III.A.2	Physical and Blending Properties of Fuel Oxygenates – Ethers Physical and Blending Properties of Fuel Oxygenates –	29-30
	Alcohols and Ester	31-32
Table IV.A.1	Operating and Design Parameters for ETBE Reactor	38
Table IV.A.2	ETBE Product Composition	39
Table IV.B.1	Operating Conditions for Isobutane Oxidation Reactor	66
Table IV.B.2	Operating Conditions for Propylene Epoxidation Reactor	69
Table V.A.1	Summary of Raw Material and Utility Prices	72
Table V.B.1	Cost of Production Estimate for: MTBE	
	Process: From Steam Cracker Mixed Butylenes	74
Table V.B.2	Cost of Production Estimate for: MTBE	
T.I. V.D.O	Process: From Fluid Catalytic Cracker	75
Table V.B.3	Cost of Production Estimate for: MTBE	70
Table V D 4	Process: From TBA	76
Table V.B.4	Cost of Production Estimate for: MTBE Process: From Field Butane	77
Table V.B.5	Cost of Production Estimate for: ETBE	11
Table V.b.3	Process: From FCC Butylenes	78
Table V.B.6	Cost of Production Estimate for: TAME	70
Table V.D.o	Process: Depentanizer, SHP, TAME Synthesis	82
Table V.B.7	Cost of Production Estimate for: DIPE	02
	Process: Propylene Hydration	85
Table V.B.8	Cost of Production Estimate for: Methanol	
	Process: Large-Scale Methanol Process	88

TABLES (Continued)

		Page
Table V.B.9	Cost of Production Estimate for: Ethanol	
	Process: Corn Fermentation	89
Table V.B.10	Cost of Production Estimate for: Isopropanol	
	Process: Propylene Hydration (Vapor Phase)	91
Table V.B.11	Cost of Production Estimate for: t-Butyl Alcohol	
	Process: PO/TBA Coproduction (Allocated Cost)	94
Table V.B.12	Cost of Production Estimate for: Dimethyl Carbonate	
	Process: Oxidative Carbonylation – Copper Chloride Redox	98
Table V.C.1	Summary of Total Capital Investments for Fuel Oxygenates	101
Table V.C.2	Summary of Cash Cost of Production for Fuel Oxygenates	106
Table V.C.3	Summary of Octane Value for Fuel Oxygenates	109
Table V.C.4	Cost/Performance Comparison of Fuel Oxygenates	112
Table VI.C.1	U.S. Oxygenate Supply/Demand Balance	117
Table VI.D.1	U.S. MTBE Capacity – 1999	120
Table VI.E.1	U.S. MTBE/TAME Supply/Demand Balance	121
Table VI.F.1	Global MTBE Demand	122
Table VI.F.2	Regional MTBE Capacity, 1999	125-128
Table VI.F.3	Regional MTBE Supply/Demand Balance	129-131

FIGURES

		Page
Figure I.C.1	Gasoline Blending Characteristics	12
Figure I.E.1	Global MTBE Demand	22
Figure III.B.1	Gasoline Blending Characteristics	34
Figure IV.A.1	ETBE Process	37
Figure IV.A.2	CDTECH TAME Process	42
Figure IV.A.3	CDETHEROL Process	46
Figure IV.A.4	ETHERMAX Process for TAME	47
Figure IV.A.5	Diisopropyl Ether from Propylene	50
Figure IV.A.6	UOP DIPE Process Single Step	54
Figure IV.B.1	Ethanol Process Whole Kernel Milling	56
Figure IV.B.2	Ethanol Process – Distillation	57
Figure IV.B.3	Ethanol Process DDG Recovery	58
Figure IV.B.4	IPA via Propylene Hydration (VEBA Chemie Process)	63
Figure IV.B.5	ARCO PO/TBA Process – Oxidation and Epoxidation	67
Figure IV.B.6	ARCO PO/TBA Process – Propylene Oxide and TBA Recovery	68
Figure V.B.1	Effects of Isobutylene Price on ETBE Cost of Production	80
Figure V.B.2	Effects of Ethanol Price on ETBE Cost of Production	80
Figure V.B.3	Effects of Isoamylene Price on TAME Cost of Production	83
Figure V.B.4	Effects of Methanol Price on TAME Cost of Production	83
Figure V.B.5	Effects of Propylene Price on DIPE Cost of Production	86
Figure V.B.6	Effects of Corn Price on Ethanol Cost of Production	90
Figure V.B.7	Effects of Propylene Price on Isopropanol Cost of Production	92
Figure V.B.8	Effects of Isobutane Price on TBA Cost of Production	96
Figure V.B.9	Effects of Oxygen Price on TBA Cost of Production	96
Figure V.B.10	Effects of Carbon Monoxide Price on DMC Cost of Production	99
Figure V.B.11	Effects of Methanol Price on DMC Cost of Production	99
Figure V.C.1	Oxygenate Capital Investment (by weight)	102
Figure V.C.2	Oxygenate Capital Investment (by volume)	102
Figure V.C.3	Effects of Capacity on Capital Investment	
	(ethers on annual weight basis)	104
Figure V.C.4	Effects of Capacity on Capital Investment	
	(ethers on annual volume basis)	104

FIGURES (Continued)

		Page
Figure V.C.5	Effects of Capacity on Capital Investment	
	(alcohols and DMC on annual weight basis)	105
Figure V.C.6	Effects of Capacity on Capital Investment	
J	(alcohols and DMC on annual volume basis)	105
Figure V.C.7	Oxygenate Cash Cost of Production (by weight)	107
Figure V.C.8	Oxygenate Cash Cost of Production (by volume)	107
Figure V.C.9	Oxygenate Cash Cost of Production (by heating value)	108
Figure V.C.10	Oxygenate Octane Value (by weight)	109
Figure V.C.11	Oxygenate Octane Value (by volume)	110
Figure VI.F.1	Global MTBE Demand	123
Figure VI.F.2	Global MTBE Capacity by Region, 1999	124