Adipic Acid 98/99-3

July 1999

TABLE OF CONTENTS

			Page
Т	EXE		1
	Α.	COMMERCIAL TECHNOLOGY	1
	B.	DEVELOPING TECHNOLOGIES	3
	C.	ECONOMICS	4
	D.	COMMERCIAL ANALYSIS	10
II	CUF	RRENT COMMERCIAL TECHNOLOGY	14
	Α.	INTRODUCTION	14
		1. Process Technology	14
		2. Nitrous Oxide and NOX Generation	14
	В.	CHEMISTRY	16
		1. Air Oxidation of Cyclohexane – Cobalt Catalyst	16
		2. Air Oxidation of Cyclohexane – Boric Acid Route	18
		3. Phenol Hydrogenation	20
		4. Cyclohexanol Via Cyclohexene Hydration	21
		5. Nitric Acid Oxidation of KA Oil	22
	C.	ADIPIC ACID FROM CYCLOHEXANE: BORIC ACID ROUTE	25
		1. KA Oil Production by the Boric Acid Route	25
		2. Adipic Acid from KA Oil by Nitric Acid Oxidation	36
	D.	ADIPIC ACID FROM CYCLOHEXANE: COBALT CATALYST	46
		1. KA Oil Production	46
		2. Nitric Acid Oxidation	50
	Ε.	ADIPIC ACID FROM PHENOL	51
		1. KA Oil Production	51
		2. Nitric Acid Oxidation	54
	F.	ADIPIC ACID FROM BENZENE VIA CYCLOHEXENE	55
		1. Cyclohexanol Production	55
		2. Nitric Acid Oxidation	61
	G.	NITROUS OXIDE EMISSIONS REDUCTION SCHEMES	61
	Н.	LICENSORS	65
III	NEV	V DEVELOPMENTS	66
	Α.	SOLUTIA INTEGRATED ADIPIC ACID/PHENOL PROCESS	66
		1. Solutia Nitrous Oxide Based Phenol Process	66
		2. Solutia Phenol Process Coupled with Adipic Acid Process	70

TABLE OF CONTENTS (Continued)

	В.	CYCLOHEXANE OXIDATION DIRECTLY TO ADIPIC	
		ACID BY AIR	71
	C.	CYCLOHEXANE OXIDATION BY HYDROGEN PEROXIDE	73
	D.	BUTADIENE-BASED ROUTES	73
		1. Rhone-Poulenc	74
		2. DuPont/DSM	74
		3. Union Carbide	76
	Ε.	DIMERIZATION OF METHYL ACRYLATE	77
IV	ECO	NOMIC ANALYSIS	79
	Α.	BASIS	79
		1. Pricing	79
		2. Investment Basis	79
		3. Cost of Production Basis	81
	В.	COST OF PRODUCTION ANALYSES	82
		1. KA Oil Via Boric Acid Modified Cyclohexane	
		Oxidation/Adipic Acid	82
		2. KA Oil Via Cobalt Catalyst/Adipic Acid	84
		3. KA Oil Via Phenol (Cumene Derived)	
		Hydrogenation/Adipic Acid	84
		4. Cyclohexanol Via Cyclohexene Hydration/Adipic Acid	90
		5. KA Oil Via Phenol (Nitrous Oxide) Hydrogenation/	
		Adipic Acid	90
		6. Speculative Case: BASF Adipic Acid Via Air-Only	
		Cyclohexane Oxidation	95
	C.	COMPARATIVE ECONOMICS	97
	D.	SENSITIVITIES	102
v	COM	MERCIAL STATUS	105
	Α.	APPLICATIONS	105

TABLE OF CONTENTS (Continued)

В.	UNITED STATES	106
D.		
	1. Demand	106
	2. Supply	108
	3. Supply/Demand Balance	109
C.	WESTERN EUROPE	110
	1. Demand	110
	2. Supply	111
	3. Supply/Demand Balance	112
D.	JAPAN	113
	1. Demand	113
	2. Supply	114
	3. Supply/Demand Balance	114
E.	GLOBAL CAPACITY	115
REF	ERENCES	117
APPENDIX A		119
APP	ENDIX B	122
PER	P TITLE INDEX	127

TABLES

Table I.C.1	U.S. Gulf Coast Summary of KA Oil Economics, 1st Qtr. 1999	6
Table I.C.2	U.S. Gulf Coast Summary of Adipic Acid Process Economics,	
	1st Quarter 1999	8
Table I.D.1	U.S. Adipic Acid Supply/Demand Balance	11
Table I.D.2	West European Adipic Acid Supply/Demand Balance	11
Table I.D.3	Japanese Adipic Acid Supply/Demand Balance	12
Table I.D.4	Global Adipic Acid Capacity by Producer	13
Table II.C.1	Main Design Parameters for KA Oil from Cyclohexane by the	
	Boric Acid Route	25
Table II.C.2	Material Balance for KA Oil Production: Boric Acid Route for	
	488 Million Pound Plant - 8,000 Hours Per Year	31-35
Table II.C.3	Main Design Parameters in Adipic Acid Production from KA Oil by	
	Nitric Acid Oxidation	36
Table II.C.4	Distribution of Nitric Acid Decomposition Products	39
Table II.C.5	Composition of Combined Reactor Gases and Final Vent Gas from Scrubber	n 39
Table II.C.6	Material Balance for Adipic Acid from KA Oil: Nitric Acid Oxidation KA Oil by Boric Acid Route for 650 Million Pound Plant - 8,000 Hours Per Year	of 43-45
Table II.C.7	Typical Adipic Acid Properties	46
Table II.C.7 Table II.D.1	Effect of KA Oil Manufacturing Method on Material Balances	40
	of Nitric Acid Oxidation of KA Oil to Adipic Acid	51
Table II.F.1	Effect of Feedstock on Material Balances of Nitric Acid Oxidation	51
	of KA Oil/Cyclohexanol to Adipic Acid	61
Table II.G.1	Estimated U.S. Emissions of Nitrous Oxide, 1993-1997	62
		02
Table III.A.1	Process Parameters for N2O Oxidation of Benzene to Phenol	68
Table IV.A.1	Feedstock and Utility Prices	80
Table IV.B.1	Cost Estimate of KA Oil Production via Cyclohexane Oxidation, Boric Acid Route	83

TABLES (Continued)

Table IV.B.2	Cost Estimate of Adipic Acid Production via Cyclohexane Oxidation	
	by Air (Boric Acid) and HNO3	85
Table IV.B.3	Cost Estimate of KA Oil Production via Cyclohexane Oxidation,	
	Cobalt Catalyst	86
Table IV.B.4	Cost Estimate of Adipic Acid Production via Cyclohexane Oxidation	
	by Air (Cobalt Catalyst) and NHO3	87
Table IV.B.5	Cost Estimate of KA Oil Production via Gas Phase Phenol	
	(Cumene Derived) Hydrogenation	88
Table IV.B.6	Cost Estimate of Adipic Acid Production via Phenol (Cumene	
	Derived) Hydrogenation and HNO3 Oxidation	89
Table IV.B.7	Cost Estimate of Cyclohexanol Production via Benzene	
	Hydrogenation, Cyclohexene Hydration	91
Table IV.B.8	Cost Estimate of Adipic Acid Production via Benzene Partial	
	Hydrogenation, Hydration, and HNO3 Oxidation	92
Table IV.B.9	Cost Estimate of KA Oil Production via Gas Phase Hydrogenation	
	of Phenol from Nitrous Oxide	93
Table IV.B.10	Cost Estimate of Adipic Acid Production via Hydrogenation of	
	Phenol from Nitrous Oxide, HNO3 Oxidation	94
Table IV.B.11	Cost Estimate of Adipic Acid Production via Single Stage Air	
	Oxidation of Cyclohexane, BASF Patent	96
Table IV.C.1	Adipic Acid Operating Parameters	97
Table IV.C.2	U.S. Gulf Coast Summary of KA Oil Process Economics,	
	1st Qtr. 1999	98
Table IV.C.3	U.S. Gulf Coast Summary of Adipic Acid Process Economics,	
	1st Qtr. 1999	100
Table V.B.1	U.S. Adipic Acid Demand	107
Table V.B.2	U.S. Adipic Acid Capacity, 1998	108
Table V.B.3	U.S. Adipic Acid Supply/Demand Balance	109
Table V.C.1	West European Adipic Acid Demand	110
Table V.C.2	West European Adipic Acid Capacity, 1998	112
Table V.C.3	West European Adipic Acid Supply/Demand Balance	112

TABLES (Continued)

Page

Table V.D.1	Japanese Adipic Acid Demand	113
Table V.D.2	Japanese Adipic Acid Capacity, 1998	114
Table V.D.3	Japanese Adipic Acid Supply/Demand Balance	115
Table V.E.1	Global Adipic Acid Capacity by Producer	116

Appendix Tables

Table A.1	Cost Estimate of Nitric Acid (60%) Production via Mixed Pressure	
	NH ₃ Oxidation	119
Table A.2	Cost Estimate of Phenol Production via Benzene/Propylene/	
	Cumene	120
Table A.3	Cost Estimate of Phenol Production via Benzene/Nitrous Oxide	
	(Solutia)	121

FIGURES

Figure I.C.1	Comparison of KA Oil Costs	7
Figure I.C.2	Comparison of Adipic Acid Costs	9
Figure II.A.1	Routes to Adipic Acid	15
Figure II.C.1	KA Oil from Cyclohexane: Boric Acid Route	27
Figure II.C.2	Adipic Acid from KA Oil via Nitric Acid Oxidation	37
Figure II.D.1	KA Oil Production by Cobalt Catalyst Route	48
Figure II.E.1	KA Oil by Phenol Hydrogenation Route	53
Figure II.F.1	Partial Hydrogenation of Benzene	57
Figure II.F.2	Extractive Distillation	58
Figure II.F.3	Cyclohexene Hydration	59
Figure III.A.1	Simplified Flow Diagram Solutia Process Benzene to Phenol	69
Figure IV.C.1	Comparison of KA Oil Costs	99
Figure IV.C.2	Comparison of Adipic Acid Costs	101
Figure IV.D.1	Feed Price Effect on Adipic Acid Cost	103
Figure IV.D.2	Capacity Effect on Adipic Acid Cost	104