Hydrogen Production in Refineries 91S13

April 1993

CONTENTS

I	SU	MM	ARY	1
II	INT	roi	DUCTION	8
III	RE	FINI	NG INDUSTRY TRENDS	9
	Α.	PETROLEUM PRODUCT DEMAND TRENDS		
		1.	United States	9
		2.	Western Europe	11
		3.	Asia	13
	В.	PR	RODUCT QUALITY TRENDS	15
		1.	Low-Sulfur Diesel	15
			(a) United States	15
			(b) Western Europe	15
			(c) Asia	15
		2.	Gasoline	16
			(a) United States	16
			(b) Western Europe	17
			(c) Asia	18
		3.	Residual Fuel Oils	19
			(a) United States	19
			(b) Western Europe	20
			(c) Asia	20
	C.	CR	RUDE OIL QUALITY TRENDS	21
		1.	Future Crude Slate In The United States	21
		2.	Future Crude Slate in Western Europe	23
		3.	Future Crude Slate in Asia	25

IV	HY	DROGE	N SOU	RCES AND USES IN REFINERIES	26
	Α.	INTRO	DUCT	ION	26
	В.	HYDRO	GEN	SOURCES IN REFINERIES	27
		1. Ca	talytic	Reforming	27
		2. Hy	drogei	n Recovery and Purification	28
		3. Or	-Purpo	ose Hydrogen Production	29
		4. Isc	butan	e Dehydrogenation	29
		5. Hy	drogei	n Purchases	30
	C.	C. HYDROGEN USES IN REFINERIES			31
		1. Dis	stillate	Hydrotreating	31
		2. He	avy Fr	action Hydrotreating	32
		3. Hy	drocra	cking	33
		4. Isc	meriza	ation	33
	D.	TYPICA	AL REI	FINERY HYDROGEN BALANCES	35
V	COMMERCIAL HYDROGEN PRODUCTION TECHNOLOGY			43	
	Α.	ON-PU	RPOS	E HYDROGEN PRODUCTION	43
		1. Ste	eam R	eforming of Methane	43
		(a)	Pro	cess Description	43
			(1)	Natural Gas Purification	43
			(2)	Steam Reforming	45
			(3)	Shift Reaction	47
			(4)	Product Purification	48
		(b)	Eco	nomics	48
	(c) New Developments			52	
			(1)	Introduction	52
			(2)	Adiabatic Pre-reforming	52
			(3)	Heat Exchange Reforming	55
			(4)	Shift Reaction	58
			(5)	Furnace Design	58

	2	Steam Reforming of Nanhtha	50
	۷.		59
		(a) Flocess Description	59
	2	(D) ECONOMICS	60
	3.		00
		(a) Process Description	62
		(b) Economics	64
-	4.		68
В.	CA	68	
	1.	Introduction	68
	2.	Hydrogen Yield Variables	72
~	3.	Economics of Increasing Hydrogen Yield	74
C.	HY	DROGEN RECOVERY AND PURIFICATION	78
	1.	Introduction	78
	2.	Pressure Swing Adsorption	79
		(a) Process Description	79
		(b) Economics	80
	3.	Membrane Separation	80
		(a) Process Description	80
		(b) Economics	82
	4.	Cryogenic Recovery	84
		(a) Process Description	84
		(b) Economics	84
D.	CO	OMPARATIVE ECONOMICS; CONCLUSIONS	86
со	MME	ERCIAL STATUS	88
Α.	GL	OBAL CAPACITY	88
В.	UN	IITED STATES	90
C.	WE	92	
D.	AS	IA	92
RE	FER	ENCES	95

VI

TABLES

Page

Table III.A.1	Far East Petroleum Product Demand	14
Table III.B.1	Asian Diesel Sulfur Specification Changes	16
Table III.B.2	Projected Gasoline Lead Levels in Other Asian	
	Countries	19
Table III.C.1	U.S. Crude Slate Composite Quality, 1981-2000	23
Table IV.C.1	Hydrogen Consuming Processes - Indicative	
	Hydrogen Requirement	34
Table IV.D.1	Hydrogen Balance Low-Sulfur Crude Cracking	
	Refinery	35
Table IV.D.2	Hydrogen Balance High-Sulfur Crude Cracking	
	Refinery	36
Table IV.D.3	Hydrogen Balance High-Sulfur Crude Cracking	
	Refinery Low-Sulfur Diesel and VGO	
	Hydrotreater	38
Table IV.D.4	Hydrogen Balance High-Sulfur Crude Cracking	
	Refinery Low-Sulfur Diesel and	
	Reformulated Gasoline	39
Table IV.D.5	Hydrogen Balance Hydrocracking Refinery	40
Table IV.D.6	Hydrogen Balance Coking Refinery	41
Table V.A.1	Cost of Production Estimate for: Hydrogen	
	Process: Steam Methane Reforming	50
Table V.A.2	Cost of Production Estimate for: Hydrogen	
	Process: Steam Methane Reforming-	
	Modular Plant	51
Table V.A.3	Cost of Production Estimate for: Hydrogen	
	Process: Steam Naphtha Reforming	61

TABLES (Continued)

Page

Table V.A.4	Cost of Production Estimate for: Hydrogen	
	Process: HyTex Partial Oxidation	66
Table V.A.5	Cost of Production Estimate for: Hydrogen	
	Process: Resid Partial Oxidation	69
Table V.B.1	Typical Naphtha Yields From Atmospheric	
	Distillation	72
Table V.B.2	Quality of Virgin Naphthas From Common	
	Crude Sources	73
Table V.B.3	Catalytic Reforming - Indicative Yield Data	74
Table V.B.4	Cost of Production Estimate for: Hydrogen	
	Process: CAT Reforming Revamp	76
Table V.C.1	Hydrogen Purification Using PSA	80
Table V.C.2	Cost of Production Estimate for: Hydrogen	
	Process: Hydrogen Recovery-PSA Unit	81
Table V.C.3	Cost of Production Estimate for: Hydrogen	
	Process: Hydrogen Recovery-Membrane	
	Unit	83
Table V.C.4	Cost of Production for: Hydrogen	
	Process: Hydrogen Recovery-Cryogenic	
	Unit	85
Table VI.A.1	Global Hydrogen Plant Capacity, 1992	89
Table VI.B.1	U.S. Hydrogen Plant Capacity, 1992	91
Table VI.B.2	Announced U.S. Hydrogen Plant Projects	92
Table VI.B.3	Announced Western Europe Hydrogen Plant Projects	93
Table VI.B.4	Announced Asian Hydrogen Plant Projects	94

FIGURES

Page

Figure I.1	Hydrogen Cost by Source	5
Figure I.2	Rang of Hydrogen Production by Source	6
Figure III.A.1	Trends in Refined Product Yields, United States	10
Figure III.A.2	Petroleum Product Demand Western Europe, Base Case	12
Figure III.C.1	Historical U.S. Crude Oil Quality	22
Figure III.C.2	Crude Oil Quality - Western Europe	24
Figure V.A.1	Hydrogen From Natural Gas (PSA Route)	44
Figure V.A.2	Hydrogen From HyCar Process	57
Figure V.A.3	Hydrogen From HyTex Process	63
Figure V.A.4	HyTex Process Hydrogen Cost	67
Figure V.B.1	Catalytic Reforming Typical Reformate Yields	71
Figure V.B.2	Catalytic Reformer Revamp Hydrogen	77