Low Carbon Intensity Propylene

A Technoeconomic and Carbon Intensity Study

June 2023

Special Report Prospectus

Contents

Section

1	Overview and Key Questions Answered
2	Carbon Intensity Overview
3	Routes to Propylene and Low Carbon Intensity Propylene
4	What is Carbon Intensity?
5	Analyses Performed and Deliverables

Introduction

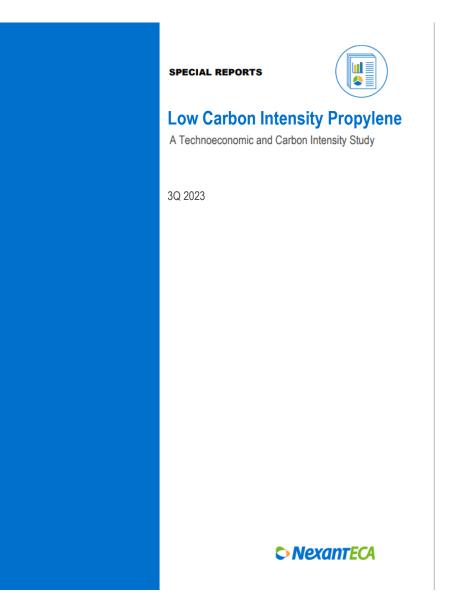
Propylene is one of the most important building blocks in the chemicals industry, the basis for additional chemicals and fuels. Its derivatives have a vital role in enabling a sustainable future

Propylene is responsible for a significant share of the global emissions from the chemicals industry.

- According to the IEA, the Chemical sector is the third largest industry subsector in terms of direct CO₂ emissions.
- Propylene is the 2nd most important chemical raw material after ethylene, and together are one one of the largest three chemical emitters: ammonia, methanol, and olefins.
- Propylene is a major feedstock for additional chemistry, including polymers, surfactants, and more – all impacted by proposed abatement routes.
- Different route options are emerging for low carbon intensity propylene, some of which utilize the existing value chain and infrastructure, each with different carbon intensities

Propylene 2022 600+ Global assets approx. 139+ million tons Installed capacity 165+ million tons CO_{2eq} annual emissions

Propylene derivatives are essential for the low-carbon technologies of the future



Objective and Key Questions Addressed

The objective of this report is to provide subscribers with carbon intensity benchmarking of conventional routes against emerging alternatives backed with technoeconomic analysis

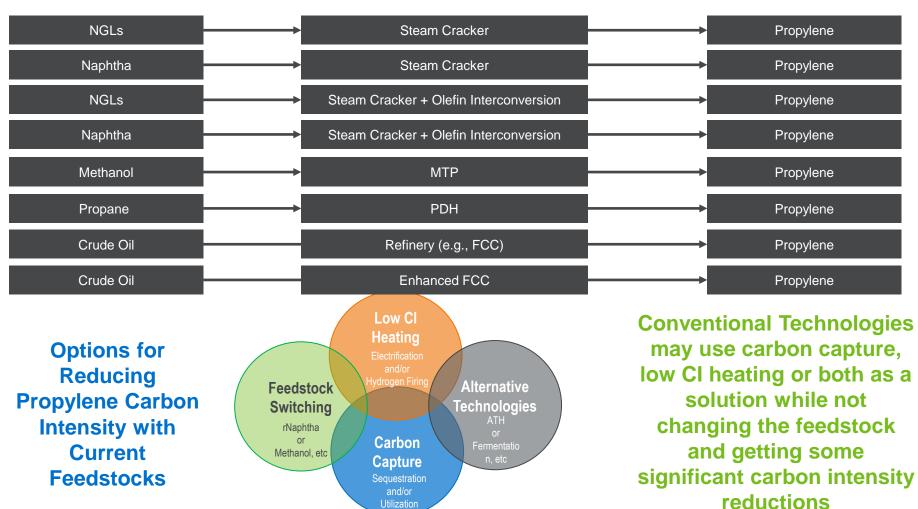
Carbon intensity benchmarking is an increasingly important consideration, and NexantECA has developed a proprietary methodology for modelling value chains per asset

- In this report, NexantECA covers alternative production routes and compares their relative cost of production and carbon intensities with conventional routes in various regions.
- Holistic approach to sustainability, of which carbon intensity is becoming an important measurable metric that impacts the company bottom line
- Specific country level analysis available as an additional modules beyond report analysis regions: U.S., Brazil, Western Europe, and China

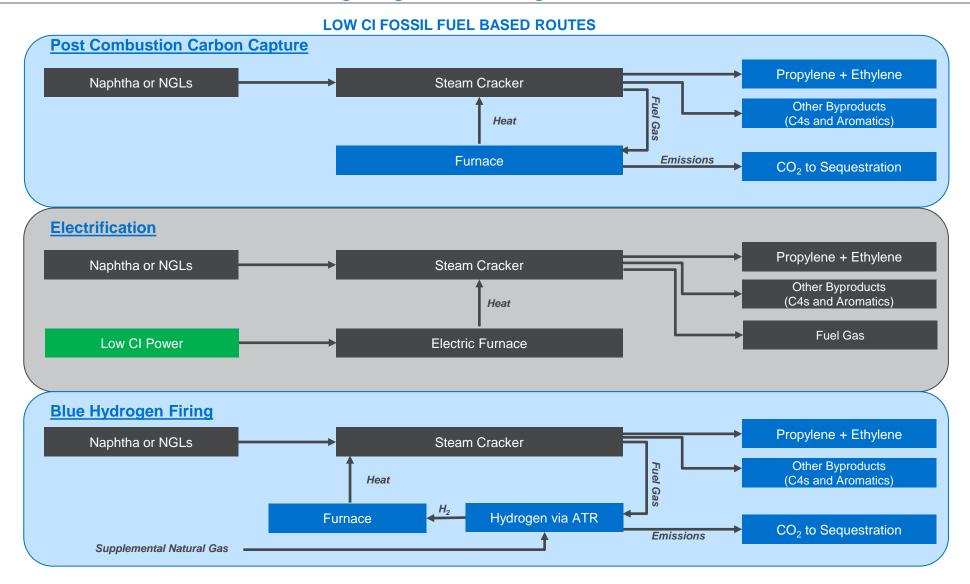
Key Questions addressed in this Special Report

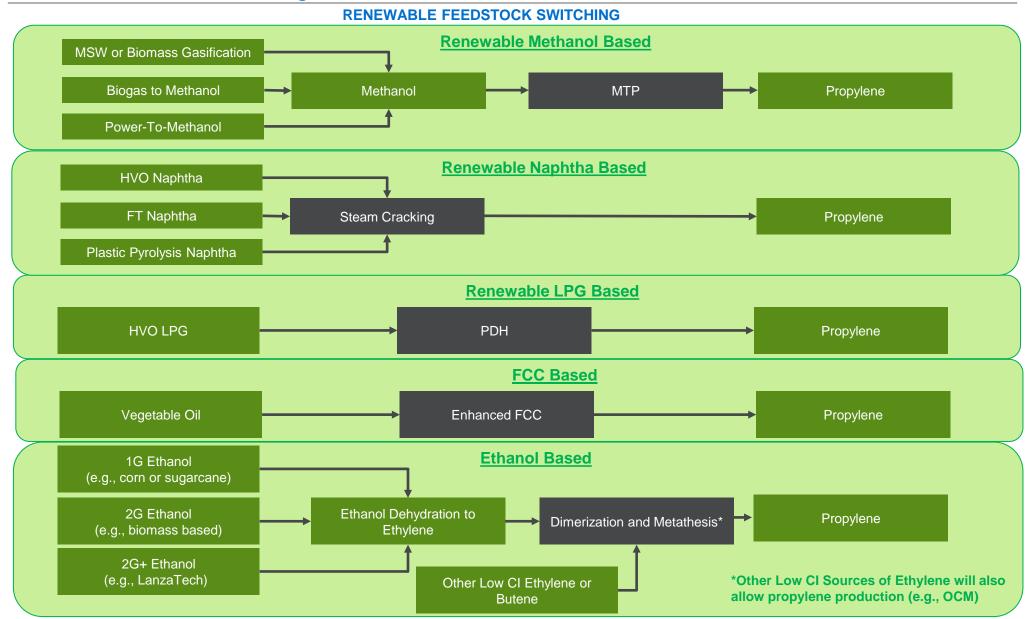
- What is the lowest carbon intensity route to propylene?
- Which make the most economic sense currently? How will this change with different frameworks and instruments for carbon price? What is the break-even carbon price for competitiveness?
- Which of the following abatement options will offer the most in terms of carbon intensity reductions, as compared to the conventional benchmarks:
 - Conventional Benchmarks:
 - Conventional Cracking
 - PDH
 - MTP
 - FCC
 - Advances and Alternative Technologies:
 - Hydrogen Firing
 - Carbon capture
 - Low CI Heating
 - Renewable naphtha / feedstock switching

- rLPG PDH
- Ethanol-to-Ethylene (E-to-E) + Metathesis
- Renewable Methanol-to-Propylene (MTP)
- Other Developing Routes (e.g., direct fermentation)


NexantECA's analysis includes multiple values for emissions reductions along with break-even values required for economic competitiveness in the following regions:

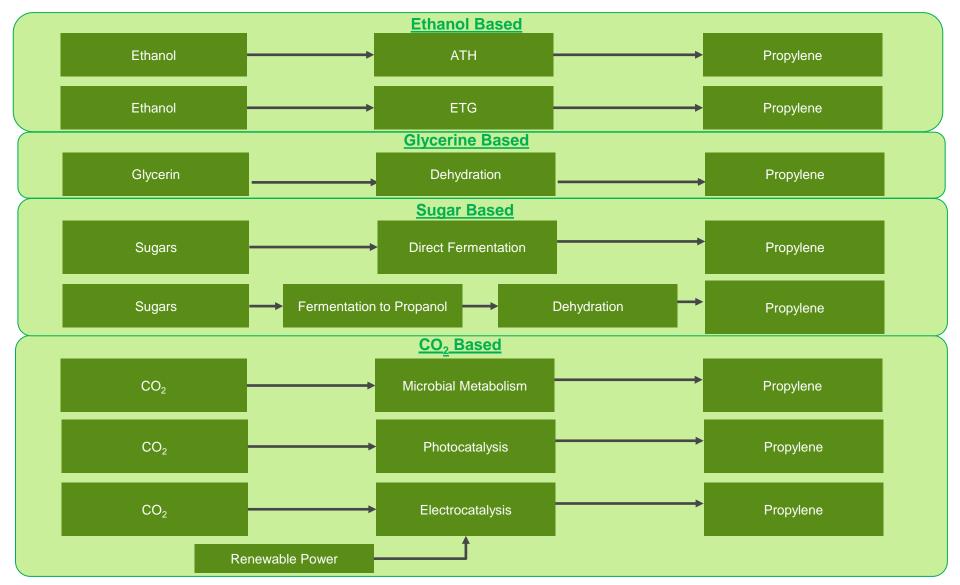
Routes to Propylene and Low Carbon Intensity Propylene


There are several primary conventional routes to propylene that the alternatives are compared to as a benchmark


PRIMARY CONVENTIONAL ROUTES

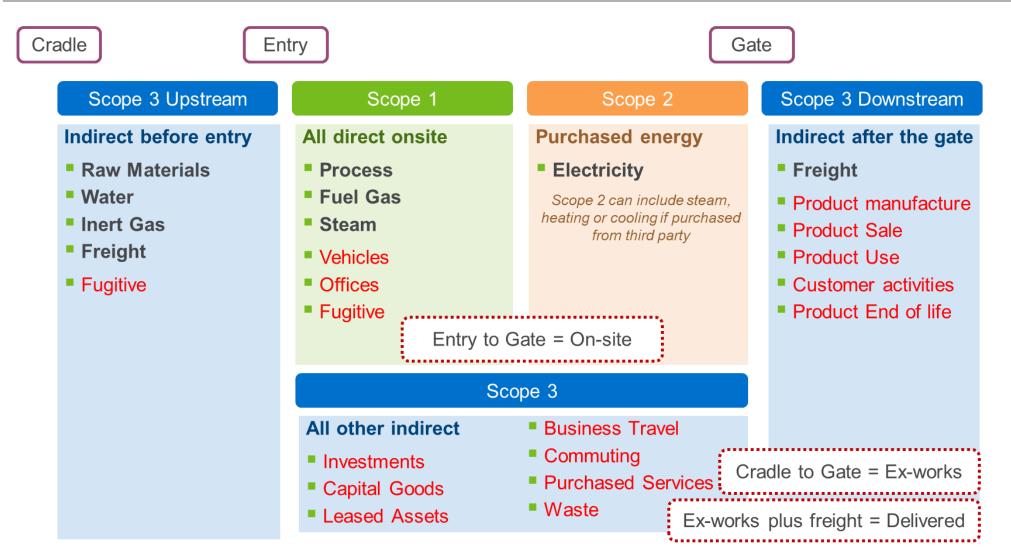
A significant proportion of propylene's emissions are scope 1 emissions due to the heating required, making it a good potential candidate for carbon capture, or switching to low CI heating and renewable power while continuing to utilize the same feedstock

There are several options for dramatically reducing cracking carbon intensity with current feedstocks - NexantECA is investigating the following cases

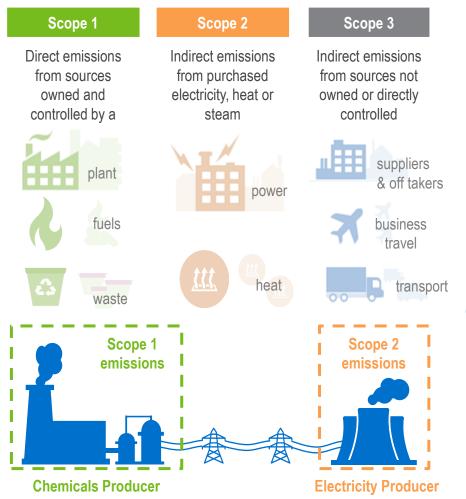


The propylene story is even more complex than ethylene because of the various options – many of which can use the existing value chain and substitute biomaterials:

The propylene story is even more complex than ethylene because of the various options – several routes are still in developmental stages


ALTERNATIVE ROUTES TO LOW CARBON INTENSITY PROPYLENE IN DEVELOPMENTAL STAGES

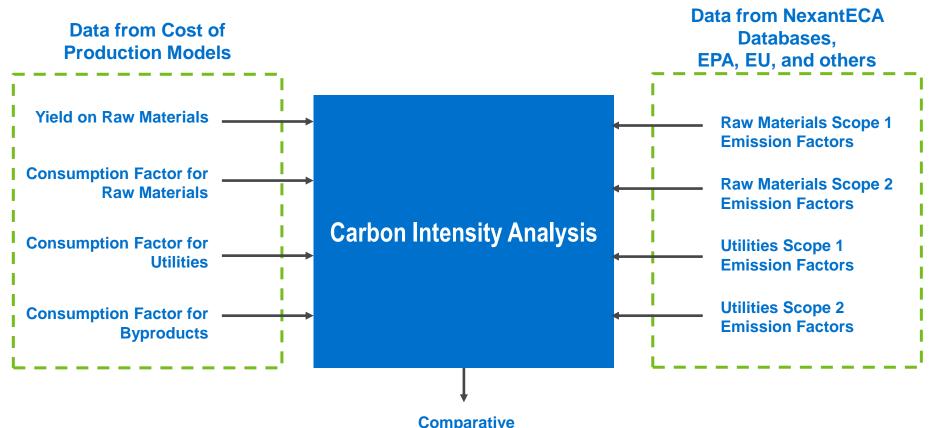
What is Carbon Intensity


Carbon Intensity is viewed by Scope 1, Scope 2, and Scope 3 Emissions – this study is concerned with Scope 1 and Scope 2 emissions, and raw materials Scope 3

Many players Net-Zero by 2050 plans are focused on Scope 1 and Scope 2 emissions

Scope 1, Scope 2 and Scope 3 emission categories are used to differentiate between direct and indirect emissions with standards and certifications having been developed for reporting

To improve transparency and completeness in reporting, the Greenhouse Gas Protocol established corporate standards and the concepts of Scope 1, 2 and 3 emissions



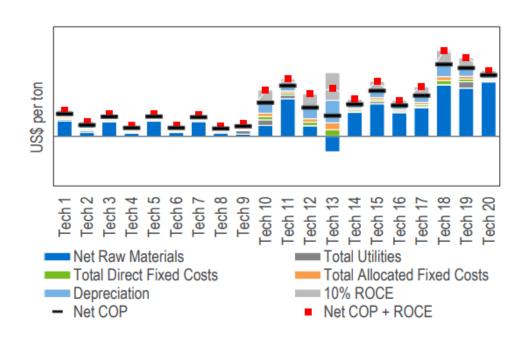
- Scope 1 emissions are direct emissions that occur from sources controlled or owned by the reporting company
 - These can be the emissions from combustion of fuels, process emissions or fugitive emissions
 - The GHG Protocol does not include biomass combustion in Scope 1
- Scope 2 emissions include the indirect emissions from the generation of purchased electricity consumed by the company
 - Purchased electricity is defined as electricity that is purchased or otherwise brought into the organisational boundary of the company
 - These emissions occur at the facility where the electricity is generated
- Scope 3 includes all other indirect emissions, the emissions which are a consequence of the activities of the company but occur from sources not owned or controlled by the company
- Scope 3 emissions are optional to report under the GHG Protocols reporting standard. Entities often narrow the inclusion criteria for Scope 3 emissions to allow for calculability

Certifications have developed to cover the full spectrum of emissions

- The **GHG Protocol** establishes comprehensive global standardised frameworks to measure and manage GHG emissions from private and public sector operations, value chains and mitigation actions
- **CDP** is a not-for-profit charity that runs the global disclosure system to assist entities in managing their environmental impacts
- The **ISCC's** objective is to contribute to the implementation of environmentally, socially and economically sustainable supply chains

The Carbon Intensity Analysis includes consumption factors from our cost of production models along with emissions factors

Scope 1 and Scope 2 Emissions


The outputs for the various routes can be compared on an even basis to determine the carbon intensity reductions possible and comparative sustainability

Special Report: Low Carbon Intensity Propylene – Technoeconomic and Carbon Intensity Study

Illustrative Cost of Production Model for Chemical X

				CAPITAL COS	т	N	ILLION U.S. \$	
Plant Start-up	1Q2010 ISBL					61.4		
Analysis Date	2010			OSBL			12.2	
Location	USGC Total Plant Capital			apital		73.7		
Capacity	274.6 Thousand Tons/yr			Other Project C	Other Project Costs		18.4	
				Total Project	Investment		92.1	
Operating Rate	100	percent		Working Capital			9.2	
Throughput	274.6	Thousand Tons/yr		Total Capital	Employed		101.3	
				UNITS	PRICE		ANNUAL	
				Per Ton	U.S. \$	U.S. \$	COST U.S.\$	U.S. 1
PRODUCTI	ION COST	SUMMARY		Product	/Unit	Per Ton	millions	Per Lb
RAWMATERIALS		Natural Gas	Gcal	6.320	21.93	138.58	38.06	
		Oxygen	ton	0.642	64.90	41.67	11.44	
		Catalysts & Chemicals		1.000	0.70	0.70	0.19	
			TOTAL RAW MATERIAL			180.96	49.69	0.08
		MATERIALS	. The next most entrol	-		180.96	49.69	0.00
UTILITIES	ALL NAM	Power	MWb	0.004	57.36	0.25	49.09	0.00
UNLINES		Cooling Water	kton	0.004	29.04	0.25	0.07	
		Boiler Feed Water	ton	1.385	29.04	0.76	0.46	
					20.21		(2.76)	
		Steam (MP) Inert Gas	ton	(0.498)	20.21	(10.07)		
		Fuel	ton Gcal	0.067	52.60 21.93	3.50 8.38	0.96 2.30	
		r uei		0.362	21.93			
			TOTAL UTILITIES			4.49	1.23	0.00
	NET RAW	MATERIALS & UTILITIES				185.44	50.92	0.08
	VARIABL	ECOST				185.44	50.92	0.08
DIRECT FIXED CO	STS	Laborer	12 employees	48.23 Thousand U	J.S. \$	2.11	0.58	
		Foremen	4 employees	54.74 Thousand I	J.S. \$	0.80	0.22	
		Supervisor	1 employees	66.05 Thousand I	J.S. \$	0.24	0.07	
		Maintenance, Material & Labor		3 % of ISBL		6.71	1.84	
		Direct Overhead		45 % Labor & Supe	ervision	1.42	0.39	
			TOTAL DIRECT FIXED			11.27	3.10	0.01
ALLOCATED FIXED COSTS General Plant Overhead				60 % Direct Fixed	Costs	6.76	1.86	
		Insurance, Property Tax		1.5 % Total Plant C		4.02	1.10	
			TOTAL ALLOCATED FI			10.79	2.96	0.00
	TOTAL FI	IXED COSTS				22.06	6.06	0.01
	TOTAL C	ASH COST				207.50	56.98	0.09
	Depreciati	ion @	10 % for ISBL & OPC	5 5	% for OSBL	31.30	8.60	0.01
		PRODUCTION				238.80	65.58	0.11
		Capital Employed (Incl. WC) @		10 6	Percent	36.89	10.13	0.02
				101	0.00m			
	COSTOF	PRODUCTION + ROCE				275.70	75.71	0.13

The outputs for the various routes can be compared on an even basis to determine the baseline competitiveness a value to carbon emissions can add to the competitiveness of the lower carbon intensity routes

► NexantECA

Carbon Intensity is compared across the different scope emissions, and the different regions and against regional benchmarks

Regional Comparisons Global Comparisons Direct Emissions Comparison Value Chain Comparison **Process Emissions Comparison** Value Chain Comparison (Scope 1, Ton CO₂ eq per Ton Propylene) (Scope 1 and 2, Ton CO₂ eq per Ton Propylene) (Scope 1,2 and 3, Ton CO₂ eq per Ton Propylene) (Scope 1,2 and 3, Ton CO₂ eq per Ton Propylene) Scope 1 Scope 2 Scope 3

Analyses Performed and Deliverables

Key Analyses Performed

Technical Review – Technical review of incumbent and alternative low carbon intensity routes to propylene. Analysis includes:

- Process Descriptions
- Process Chemistry
- Technical Overviews

Carbon Intensity Analysis: A carbon intensity analysis with an output of tons CO₂eq per ton propylene (comprising scope 1 and scope 2 emissions)will be performed for the US Gulf Coast, Western Europe, Asia, and South America, as regionally relevant(other regions and specific countries are available as an add-on for an additional fee) for:

- 6 Primary Incumbent Propylene production routes:
 - NGL (E/P) Steam cracking
 - Naphtha Steam Cracking
 - Steam Cracking with Olefin Conversion
 - MTP
 - PDH
 - FCC
 - Enhanced FCC
- Identified alternatives for low carbon intensity propylene production in several categories:
 - Electric Heating with Renewable Power

- Blue Hydrogen Firing
- Renewable Methanol-Based MTP
- Steam Cracking with Renewable Feedstocks
- Ethanol-Based Metathesis
- Developmental Routes, as available and reasonable
- Carbon Capture as a second case for all Base Cases
- Economic Review A cost of production (COP) analysis with an output of COP models and comparative economics will be performed for the U.S. Gulf Coast, Western Europe, Asia, and South America, as regionally relevant(other regions and specific countries are available as an add-on for an additional fee) for all identified Routes, including:
- Current economic competitiveness vs the incumbent and market prices

Strategic Review – A high level review of current status of development, key players, and capacity plans for plants of alternative low carbon intensity propylene production, and potential impacts on the industry

- Breakeven value for CO₂ emissions reduction required for economic competitiveness
 - Based-upon direct emissions (Scope 1)
 - Based-upon processing emissions (Scope 1+2)
 - Based-upon value chain emissions (Scope 1+2+3)

Table of Contents

Section 1: Executive Summary

Section 2: Introduction

Section 3: Technology Analysis

- 3.1 Overview
- 3.2 Steam Cracking
 - 3.2.1 Conventional Steam Cracking
 - 3.2.2 Steam Cracking + Olefin Conversion
 - 3.2.3 Electric Cracking
 - 3.2.4 Hydrogen Firing
- 3.3 MTP
- 3.4 PDH
- 3.5 Carbon Capture
- 3.6 Feedstock Switching rMethanol, rNaphtha, and rLPG
- 3.7 Other Developmental Routes

Section 4: Carbon Intensity Analysis

- 4.1 Methodology
- 4.2 Results

Section 5: Economic Analysis

5.1 Methodology

- 5.2 Overview 5.3 Comparative Economics
 - 5.4 Cost of Production Models
 - 5.5 Conclusions

Section 6: Strategic Analysis

- 6.1 Strategic Insights
- 6.2 Carbon Intensity Reduction Value Scenarios

Appendix A: References

www.NexantECA.com

Disclaimer

This Report was prepared by NexantECA, the Energy and Chemicals Advisory company. Except where specifically stated otherwise in this Report, the information contained here is prepared on the basis of information that is publicly available, and contains no confidential third party technical information to the best knowledge of NexantECA. Aforesaid information has not been independently verified or otherwise examined to determine its accuracy, completeness or financial feasibility. Neither NexantECA, Client nor any person acting on behalf of either assumes any liabilities with respect to the use of or for damages resulting from the use of any information contained in this Report. NexantECA does not represent or warrant that any assumed conditions will come to pass.

Copyright © by NexantECA (BVI) Ltd. 2021. All rights reserved.