TECHNOLOGY & COSTS

Technoeconomics - Energy & Chemicals (TECH) TECH 2020S11 Recycling of Lithium-ion Batteries

Table of Contents

A Report by NexantECA, Inc.

Published Date: December 2020

www.nexanteca.com/subscriptions-and-reports

Contents

1	Execut	ive Sum	mary	1
	1.1	The Pr	oblem of Battery Recycling	1
	1.2	State of	of Industry	1
		1.2.1	Products	2
		1.2.2	Commercial Technologies	2
		1.2.3	Emerging Technologies	5
	1.3	Econor	mic Analysis	6
2	Introdu	ction		
	2.1	Drivers	s for Battery Recycling	
	2.2	Techno	ology and Licensing	
	2.3	Busine	ess Developments	
	2.4	Industr	ſy	
		2.4.1	Battery Recycling Products	
		2.4.2	Recovered Product Properties	
		2.4.3	Battery Recycling Economics	
3	Battery	/ Fundar	nentals	
	3.1	Battery	/ Theory	
	3.2	Battery	/ Design	
		3.2.1	Design Goals	
		3.2.2	Commercial Battery Systems	
	3.3	Lithium	n-ion Batteries	
		3.3.1	Electrolytes	
		3.3.2	Electrodes	
		3.3.3	Design and Safety Concerns	
	3.4	Lithium	n-Ion Battery Construction	
		3.4.1	Battery Components	
		3.4.2	Battery Geometry	
4	Battery	/ Recycli	ing Business and Value Chain	
	4.1	Battery	/ Degradation	

	4.2	Battery	Life Extension Processes	
		4.2.1	Battery Remanufacturing	
		4.2.2	Battery Repurposing	
	4.3	Battery	Recycling Value Chain	
		4.3.1	Collection	
		4.3.2	Aggregation and Sorting	
		4.3.3	Battery Recycling Markets	
5	Comm	ercial Ba	Ittery Materials Recovery Processes	51
	5.1	Pre-Pro	pressing and Beneficiation	51
		5.1.1	Introduction	51
		5.1.2	Process Basics	
		5.1.3	Retriev (formerly Toxco)	
		5.1.4	Other Players	62
	5.2	Hydron	netallurgical Refining	63
		5.2.1	Introduction	63
		5.2.2	Process Basics	64
		5.2.3	TES-AMM (Recupyl)	78
		5.2.4	Euro Dieuze Industrie (EDI)	
		5.2.5	GEM Co. (Shenzhen Green Eco-Manufacturer Hi-Tech Co.)	85
		5.2.6	Quzhou Huayou	
		5.2.7	Duesenfeld	
		5.2.8	Other Players	
	5.3	Hybrid	Pyro-Hydrometallurgical Refining	
		5.3.1	Introduction	
		5.3.2	Process Basics	
		5.3.3	Umicore Ultra-High Temperature (UHT) Process	
		5.3.4	JX Nippon Mining and Metals Co. (JX-NMM)	
		5.3.5	Sumitomo Metals and Mining (SMM)	
		5.3.6	Société Nouvelle d'Affinage des Métaux (SNAM)	115
		5.3.7	SungEel HiTech	117
		5.3.8	Ganzhou Highpower	
		5.3.9	Hunan Brunp	
		5.3.10	Other Players	127
6	Emergi	ing Batte	ery Materials Recovery Processes	130
	6.1	Introdu	ction	
	6.2	Hydron	netallurgic Processes	
		6.2.1	Li-Cycle	
		6.2.2	American Manganese	
		6.2.3	Attero Recycling	141
		6.2.4	Lithion Recycling	
		6.2.5	Northvolt	
		6.2.6	Battery Resourcers	

2

		6.2.7	Neometals	159
		6.2.8	Other Players	160
	6.3	Pyro-H	lydrometallurgic Processes	161
7	Proces	s Econo	omics	162
	7.1	Costing	g Basis	162
		7.1.1	Investment Basis	162
		7.1.2	Pricing Basis	162
		7.1.3	Cost of Production Basis	166
		7.1.4	Product and Feedstock Basis	166
	7.2	Cost of	f Production Estimates	167
		7.2.1	Overview	167
		7.2.2	Geographic Basis	167
		7.2.3	Capacity Scenarios	168
		7.2.4	Variable Feedstock Basis	168
	7.3	Hydror	netallurgic Process Model	169
		7.3.1	Model Assumptions	169
		7.3.2	Sample Cost of Production Models	171
		7.3.3	Simulation Results	181
	7.4	Pyro-H	lydrometallurgic Reduction Roast Process Model	194
		7.4.1	Model Assumptions	194
		7.4.2	Sample Cost of Production Models	196
		7.4.3	Simulation Results	207
8	Market	Analysi	S	218
	8.1	Feedst	ock Supply	218
	8.2	Global	Capacity	219
9	Strateg	jic Overv	view	221
	9.1 Com		ercial Outlook	221
		9.1.1	Current Field Status of Lithium-Ion Battery Recycling Business Models	221
		9.1.2	Implications of Economic Analysis	222
		9.1.3	Lithium-Ion Battery Global Capacity Outlook	225
		9.1.4	Feedstock Access and Logistics	226
		9.1.5	Future Developments	
	9.2	Techno	ology Outlook	232
		9.2.1	Commercial Technologies	232
		9.2.2	Innovative Technologies	232

Appendices

А	Economic Model Methodology	. 235
В	Definitions of Capital Cost Terms Used in Process Economics	. 242
С	Definitions of Operating Cost Terms Used in Process Economics	. 246
D	TECH Program Title Index (2010-2020)	. 249
Е	References	. 252

NexantECA

Figures

Figure 1	Hydrometallurgic Cost of Production Model U.S. Gulf Coast Simulation Outcomes, Annual Return on Capital (Percent) versus Normalized Nickel-Cobalt Electrode Contents	7
Figure 2	Pyro-Hydrometallurgic Reduction Roast Cost of Production Model U.S. Gulf Coast Simulation Outcomes, Annual Return on Capital (Percent) versus Normalized Nickel-Cobalt Electrode Contents	7
Figure 3	Hydrometallurgic Cost of Production Model Western Europe Simulation Outcomes, Annual Return on Capital (Percent) versus Normalized Nickel-Cobalt Electrode Contents	8
Figure 4	Pyro-Hydrometallurgic Reduction Roast Cost of Production Model Western Europe Simulation Outcomes, Annual Return on Capital (Percent) versus Normalized Nickel-Cobalt Electrode Contents	8
Figure 5	Hydrometallurgic Cost of Production Model Coastal China Simulation Outcomes, Annual Return on Capital (Percent) versus Normalized Nickel-Cobalt Electrode Contents	9
Figure 6	Pyro-Hydrometallurgic Reduction Roast Cost of Production Model Coastal China Simulation Outcomes, Annual Return on Capital (Percent) versus Normalized Nickel-Cobalt Electrode Contents	9
Figure 7	Lithium-Ion Rechargeable Batteries Used in Portable Electronic Devices	10
Figure 8	Diagram of a Basic Battery	25
Figure 9	Battery Electrode Configurations	
Figure 10	Structural Housing for Module of 18650 Lithium-ion Batteries	40
Figure 11	Internal Structure of 18650 Lithium-ion Battery Including Safety Devices	41
Figure 12	Diagram of a CR2032 (Coin Round 20 mm x 3.2 mm) Primary Lithium Coin Cell	42
Figure 13	Various Lithium-Ion Battery Cell Designs: (a) Cylindrical, (b) Prismatic and (c) Pouch	43
Figure 14	Mechanisms of Degradation in Lithium-ion Batteries	45
Figure 15	Connections between Normal Battery Use, Degradation, and Ultimate Loss of Function	45
Figure 16	Battery Recycling Supply Chain	48
Figure 17	Schematic Representations of Magnetic and Eddy Current Separators	55
Figure 18	Spiral Concentrators	56
Figure 19	Battery Electrode "Black Mass"	56
Figure 20	Flotation Cell Diagram	57
Figure 21	Block Flow Diagram of Retriev Lithium-Ion Battery Recycling Process	61
Figure 22	Generalized Block Flow Sheet for Solvent Extractions	70
Figure 23	Cyanex 272 Extraction Curve	71
Figure 24	Log Solubility (aM) versus pH for Metal Hydroxides	73
Figure 25	Log Solubility (aM) versus pH for Metal Carbonates	75
Figure 26	Log Solubility (aM) versus pH for Metal Sulfides	76
Figure 27	Block Flow Diagram of TES-AMM/Recupyl Process for Lithium-Ion Battery	
-	Recycling	80
Figure 28	Block Flow Diagram of Euro Dieuze Industrie Process for Lithium-Ion Battery Recycling	84
Figure 29	Block Flow Diagram of Quzhou Huavou Process for Lithium-Ion Battery Recycling	
Figure 30	Block Flow Diagram of Duesenfeld Process for Recvcling Lithium-Ion Batteries	
Figure 31	Ellingham Diagram for the Free Energy of Formation of Metallic Oxides	
Figure 32	Vertical Shaft Blast Furnace	103
Figure 33	Block Flow Diagram of Umicore UHT Process for Recycling Lithium-Ion Batteries	105

Figure 34	Diagram of Umicore UHT Process Furnace	106
Figure 35	Umicore UHT Process Battery Handling Capabilities	107
Figure 36	JX-NMM Recycling Process	109
Figure 37	Summary Process Flow for Operations at SMM Toyo Copper Smelter	111
Figure 38	Nickel-Cobalt Purification Summary Process Flow at SMM Niihama Nickel Refinery	114
Figure 39	Block Flow Diagram of SNAM Process for Recycling Lithium-Ion Batteries	116
Figure 40	Block Flow Diagram of SungEel HiTech Process for Recycling Lithium-Ion Batteries	118
Figure 41	SungEel HiTech Two-Stage Rotary Incinerator	119
Figure 42	Speculative Block Flow Diagram of Ganzhou Highpower Process for Lithium-Ion	
0	Battery Recycling	123
Figure 43	Block Flow Diagram of Hunan Brunp Process for Lithium-Ion Battery Recycling	125
Figure 44	Block Flow Diagram of Li-Cycle Process for Lithium-Ion Battery Recycling	132
Figure 45	Speculative Block Flow Diagram of American Manganese Inc. RecycLiCo Process	
0	for Lithium-Ion Battery Recycling	138
Figure 46	Block Flow Diagram of Attero Recycling's Process for Lithium-Ion Battery Recycling	143
Figure 47	Block Flow Diagram of Lithion Recycling Process For Lithium-Ion Battery Recycling	147
Figure 48	Block Flow Diagram of Solvent Extraction and Purification System in	
-	LithionRecycling Process for Lithium-Ion Battery Recycling	148
Figure 49	Northvolt Recycling Process Schematic	152
Figure 50	Speculative Block Flow Diagram of Northvolt Process for Lithium-Ion Battery	
-	Recycling	154
Figure 51	Speculative Block Flow Diagram of Battery Resourcers Process for Lithium-Ion	
	Battery Recycling	158
Figure 52 Bl	ock Flow Diagram of Generic Hydrometallurgic Process Modeled	170
Figure 53	Hydrometallurgic Cost of Production Model U.S. Gulf Coast Simulation Outcomes,	
	Annual Return on Capital (Percent) versus Normalized Nickel-Cobalt Electrode	
	Contents	181
Figure 54	Hydrometallurgic Cost of Production Model U.S. Gulf Coast Simulation Outcomes,	
	Gross Margin (\$ per Ton Battery Processed) versus Normalized Nickel-Cobalt	
	Electrode Contents	182
Figure 55	Hydrometallurgic Cost of Production Model U.S. Gulf Coast Simulation Outcomes	
	Annual Return on Capital (Percent) versus Normalized Iron-Manganese Electrode	100
Figure FC	Contents	103
Figure 56	Gross Margin (& per Ten Bettery Processed) versus Nermalized Iron Manganese	
	Electrode Contents	183
Figure 57	Hydrometallurgic Cost of Production Model U.S. Gulf Coast Simulation Outcomes	105
rigure 57	Cost of Processing (\$ per Ton Batteries) versus Normalized Iron-Manganese	
	Electrode Contents	184
Figure 58	Hydrometallurgic Cost of Production Model U.S. Gulf Coast Simulation Outcomes	
i igure ee	Cost of Processing (\$ per Ton Batteries) versus Normalized Nickel-Cobalt	
	Electrode Contents	185
Figure 59	Hydrometallurgic Cost of Production Model Western Europe Simulation Outcomes,	
0	Annual Return on Capital (Percent) versus Normalized Nickel-Cobalt Electrode	
	Contents	186
Figure 60	Hydrometallurgic Cost of Production Model Western Europe Simulation Outcomes,	
	Gross Margin (\$ per Ton Battery Processed) versus Normalized Nickel-Cobalt	
	Electrode Contents	187
Figure 61	Hydrometallurgic Cost of Production Model Western Europe Simulation Outcomes,	
	Annual Return on Capital (Percent) versus Normalized Iron-Manganese Electrode	
	Contents	187

Figure 62	Hydrometallurgic Cost of Production Model Western Europe Simulation Outcomes, Gross Margin (\$ per Ton Battery Processed) versus Normalized Iron-Manganese Electrode Contents	188
Figure 63	Hydrometallurgic Cost of Production Model Western Europe Simulation Outcomes, Cost of Processing (\$ per Ton Batteries) versus Normalized Iron-Manganese Electrode Contents	189
Figure 64	Hydrometallurgic Cost of Production Model Western Europe Simulation Outcomes, Cost of Processing (\$ per Ton Batteries) versus Normalized Nickel-Cobalt Electrode Contents	189
Figure 65	Hydrometallurgic Cost of Production Model Coastal China Simulation Outcomes, Annual Return on Capital (Percent) versus Normalized Nickel-Cobalt Electrode Contents	190
Figure 66	Hydrometallurgic Cost of Production Model Coastal China Simulation Outcomes, Gross Margin (\$ per Ton Battery Processed) versus Normalized Nickel-Cobalt Electrode Contents	191
Figure 67	Hydrometallurgic Cost of Production Model Coastal China Simulation Outcomes, Annual Return on Capital (Percent) versus Normalized Iron-Manganese Electrode Contents	191
Figure 68	Hydrometallurgic Cost of Production Model Coastal China Simulation Outcomes, Gross Margin (\$ per Ton Battery Processed) versus Normalized Iron-Manganese Electrode Contents	192
Figure 69	Hydrometallurgic Cost of Production Model Coastal China Simulation Outcomes, Cost of Processing (\$ per Ton Batteries) versus Normalized Iron-Manganese Electrode Contents	193
Figure 70	Hydrometallurgic Cost of Production Model Coastal China Simulation Outcomes, Cost of Processing (\$ per Ton Batteries) versus Normalized Nickel-Cobalt Electrode Contents	193
Figure 71 B	lock Flow Diagram of Generic Pyro-Hydrometallurgic Reduction Roast Process	105
Figure 72	Pyro-Hydrometallurgic Cost of Production Model U.S. Gulf Coast Simulation Outcomes, Annual Return on Capital (Percent) versus Normalized Nickel-Cobalt Electrode Contents	195
Figure 73	Pyro-Hydrometallurgic Cost of Production Model U.S. Gulf Coast Simulation Outcomes, Gross Margin (\$ per Ton Battery Processed) versus Normalized Nickel-Cobalt Electrode Contents	208
Figure 74	Pyro-Hydrometallurgic Cost of Production Model U.S. Gulf Coast Simulation Outcomes, Annual Return on Capital (Percent) versus Normalized Iron- Manganese Electrode Contents	209
Figure 75	Pyro-Hydrometallurgic Cost of Production Model U.S. Gulf Coast Simulation Outcomes, Gross Margin (\$ per Ton Battery Processed) versus Normalized Iron- Manganese Electrode Contents	209
Figure 76	Pyro-Hydrometallurgic Cost of Production Model U.S. Gulf Coast Simulation Outcomes, Cost of Processing (\$ per Ton Batteries) versus Normalized Iron-	210
Figure 77	Pyro-Hydrometallurgic Cost of Production Model U.S. Gulf Coast Simulation Outcomes, Cost of Processing (\$ per Ton Batteries) versus Normalized Nickel- Cobalt Electrode Contents	210
Figure 78	Pyro-Hydrometallurgic Cost of Production Model Western Europe Simulation Outcomes, Annual Return on Capital (Percent) versus Normalized Nickel-Cobalt Electrode Contents	210

Figure 79	Pyro-Hydrometallurgic Cost of Production Model Western Europe Simulation Outcomes, Gross Margin (\$ per Ton Battery Processed) versus Normalized Nickel-Cobalt Electrode Contents	212
Figure 80	Pyro-Hydrometallurgic Cost of Production Model Western Europe Simulation Outcomes, Annual Return on Capital (Percent) versus Normalized Iron- Manganese Electrode Contents	212
Figure 81	Pyro-Hydrometallurgic Cost of Production Model Western Europe Simulation Outcomes, Gross Margin (\$ per Ton Battery Processed) versus Normalized Iron- Manganese Electrode Contents	213
Figure 82	Pyro-Hydrometallurgic Cost of Production Model Western Europe Simulation Outcomes, Cost of Processing (\$ per Ton Batteries) versus Normalized Iron- Manganese Electrode Contents	213
Figure 83	Pyro-Hydrometallurgic Cost of Production Model Western Europe Simulation Outcomes, Cost of Processing (\$ per Ton Batteries) versus Normalized Nickel- Cobalt Electrode Contents	214
Figure 84	Pyro-Hydrometallurgic Cost of Production Model Coastal China Simulation Outcomes, Annual Return on Capital (Percent) versus Normalized Nickel-Cobalt Electrode Contents	215
Figure 85	Pyro-Hydrometallurgic Cost of Production Model Coastal China Simulation Outcomes, Gross Margin (\$ per Ton Battery Processed) versus Normalized Nickel- Cobalt Electrode Contents	215
Figure 86	Pyro-Hydrometallurgic Cost of Production Model Coastal China Simulation Outcomes, Annual Return on Capital (Percent) versus Normalized Iron-Manganese Electrode Contents	216
Figure 87	Pyro-Hydrometallurgic Cost of Production Model Coastal China Simulation Outcomes, Gross Margin (\$ per Ton Battery Processed) versus Normalized Iron- Manganese Electrode Contents	216
Figure 88	Pyro-Hydrometallurgic Cost of Production Model Coastal China Simulation Outcomes, Cost of Processing (\$ per Ton Batteries) versus Normalized Iron- Manganese Electrode Contents	217
Figure 89	Pyro-Hydrometallurgic Cost of Production Model Coastal China Simulation Outcomes, Cost of Processing (\$ per Ton Batteries) versus Normalized Nickel- Cobalt Electrode Contents.	217
Figure 90	Overall Frequency of Li-Ion Battery Chemistries in NexantECA Monte Carlo Data Set	
Figure 91 Figure 92	Relative Frequency of Cathode Metals in NexantECA Monte Carlo Data Set Heatmap of Relative Nickel versus Cobalt Content in Electrodes of NexantECA Monte Carlo Dataset	237
Figure 93	Heatmap of Relative Iron versus Manganese Content in Electrodes of NexantECA Monte Carlo Dataset	239

7

Tables

Table 1	Potentially Valuable Lithium-Ion Battery Materials for Recovery	2
Table 2	Commercial Lithium-ion Battery Recycling Technology Developers and Current Licensing Status	3
Table 3	Major Operations Used in Pre-processing and Beneficiation	4
Table 4	Major Operations Used in Hydrometallurgic Processing	4
Table 5	Major Operations Used In Pyro-Hydrometallugical Processing	5
Table 6	Innovative Lithium-Ion Battery Recycling Technology Developers and Licensing Status.	5
Table 7	Major Lithium-ion Battery Recycling Technology Developers and Current Licensing Status	13
Table 8	Potentially Valuable Lithium-Ion Battery Materials for Recovery	16
Table 9	OSHA Hazards for Nickel (II) Hydroxide	19
Table 10	OSHA Hazard Identification Ratings	19
Table 11	OSHA Hazards for Basic Nickel (II) Carbonate	20
Table 12	OSHA Hazards for Cobalt (II) Carbonate	20
Table 13	Specifications for Grades of Metallic Nickel	21
Table 14	Specifications for Major Chemical and Metal Grades of Cobalt	21
Table 15	Lithium Carbonate Grades Offered by Producers	22
Table 16	U.S. OSHA Hazard Ratings for Lithium Carbonate	
Table 17	Components Recovered in Lithium-ion Battery Recycling	24
Table 18	Major Battery Electrode Systems and Applications	27
Table 19	Properties of Lithium in Comparison to Other Common Anode Materials	28
Table 20	Major Characteristics of Commercial Lithium-Ion Battery Anodes	31
Table 21	Major Characteristics of Commercial Lithium-Ion Battery Cathodes	33
Table 22	NMC Chemistries and Composition	34
Table 22	Desirable Properties of Lithium-ion Battery Separator Materials	
Table 20	Eactors Influencing Integration of Recyclers with Supply Chain Activities	
Table 25	Levels of Consolidation in Sources for Batteries	+0 //8
Table 26	Markets for Recovered Battery Materials	50
Table 20	Major Operations Lload in Pre-processing and Reneficiation	
	Extractant Systems and Their Use in Battery Recycling Hydrometallurgical Solutions	52
Table 20	Ion Exchange Resin Systems and Their Use in Battery Recycling	
	Hydrometallurgical Solutions	72
Table 30	Major Operations Used In Pyro-Hydrometallugical Processing	94
Table 31	Proportions of Non-Battery Components in a Pryometallurgic Reduction Solids	100
Table 22	Charge	102
Table 32	Composition of a whole-battery Charge in a Battery Reducing Furnace	102
Table 33	Prices of Raw Materials, Utilities, and Labor	163
Table 34	Summary of Base Case Results for NexantECA Hydrometallurgic Model	171
Table 35	Cost of Production Estimate for: Recycling Lithium-Ion Batteries Process: Hydrometallurgic, USGC, 100% I CO Base Case	172
Table 36	Cost of Production Estimate for: Recycling Lithium-Ion Batteries Process: Hydrometallurgic, USGC, 100% LFP Base Case	173
Table 37	Cost of Production Estimate for: Recycling Lithium-Ion Batteries	
Table 38	Process: Hydrometallurgic, USGC, 100% NMC111 Base Case Cost of Production Estimate for: Recycling Lithium-Ion Batteries Process: Hydrometallurgic, Western Europe, 100% LCO Base Case	174 175

Table 39	Cost of Production Estimate for: Recycling Lithium-Ion Batteries	
	Process: Hydrometallurgic, Western Europe, 100% LFP Base Case	
Table 40	Cost of Production Estimate for: Recycling Lithium-Ion Batteries	
	Process: Hydrometallurgic, Western Europe, 100% NMC111 Base Case	177
Table 41	Cost of Production Estimate for: Recycling Lithium-Ion Batteries	
	Process: Hydrometallurgic, Coastal China, 100% LCO Base Case	
Table 42	Cost of Production Estimate for: Recycling Lithium-Ion Batteries	
	Process: Hydrometallurgic, Coastal China, 100% LFP Base Case	
Table 43	Cost of Production Estimate for: Recycling Lithium-Ion Batteries	
	Process: Hydrometallurgic, Coastal China, 100% NMC111 Base Case	
Table 44	Summary of Base Case Results from NexantECA Pyro-Hydrometallurgical	
	Reduction Roast Model	
Table 45	Cost of Production Estimate for: Lithium-Ion Battery Recycling	
	Process: Pyro-Hydrometallurgic Reduction Roast/Ammoniacal Leach Recycling,	
	USGC 100% LCO Base Case	
Table 46	Cost of Production Estimate for: Lithium-Ion Battery Recycling	
	Process: Pyro-Hydrometallurgic Reduction Roast/Ammoniacal Leach Recycling,	100
	USGC 100% LFP Base Case	
I able 47	Cost of Production Estimate for: Lithium-Ion Battery Recycling	
	Process: Pyro-Hydrometallurgic Reduction Roast/Ammoniacal Leach Recycling,	200
Table 40	Oset of Declustics Estimate for Lithium Lan Detter Decusing	200
Table 48	Cost of Production Estimate for: Lithium-Ion Battery Recycling	
	Western Europe, 100% LCO Base Case	201
Table 19	Cost of Production Estimate for: Lithium-Ion Battery Recycling	201
	Process: Pyro-Hydrometallurgic Reduction Roast/Ammoniacal Leach Recycling	
	Western Europe 100% LEP Base Case	202
Table 50	Cost of Production Estimate for Lithium-Ion Battery Recycling	
	Process: Pyro-Hydrometallurgic Reduction Roast/Ammoniacal Leach Recycling.	
	WE 100% NMC111 Base Case	
Table 51	Cost of Production Estimate for Lithium-Ion Battery Recycling	
	Process: Pyro-Hydrometallurgic Reduction Roast/Ammoniacal Leach Recycling,	
	Coastal China 100% LCO Base Case	
Table 52	Cost of Production Estimate for Lithium-Ion Battery Recycling	
	Process: Pyro-Hydrometallurgic Reduction Roast/Ammoniacal Leach Recycling,	
	Coastal China 100% LFP Base Case	
Table 53	Cost of Production Estimate for Lithium-Ion Battery Recycling	
	Process: Pyro-Hydrometallurgic Reduction Roast/Ammoniacal Leach Recycling,	
	Coastal China 100% NMC111 Base Case	
Table 54	2020 Current Global Capacity for Lithium-Ion Battery Recycling	
Table 55	NexantECA Simulation Battery Composition, Mass Percent	
Table 56	Sample Statistics for Frequencies in NexantECA Monte Carlo Input Set	
Table 58	NexantECA Model Fixed Consumption Factors in Hydrometallurgic Processing	
Table 59	NexantECA Model Variable Consumption Factors in Hydrometallurgic Processing	
Table 60	NexantECA Model Heuristic Constraints in Pyro-Hydrometallurgic Processing	
Table 61	NexantECA Model Variable Consumption Factors in Pyro-hydrometallurgic	
	Processing	

TECHNOLOGY & COSTS

Technoeconomics - Energy & Chemicals (TECH)

The NexantECA Subscriptions' Technoeconomics - Energy & Chemicals (TECH) program is recognized globally as the industry standard source for information relevant to the chemical process and refining industries. Technoeconomics - Energy & Chemicals (TECH) reports are available as a subscription program or on a single report basis.

Contact Details:

Americas:

Marcos Nogueira Cesar, Vice President, Global Products, E&CA: NexantECA Subscriptions Phone: + 1-914-609-0324, e-mail: mcesar@nexant.com

Erica Hill, Client Services Coordinator, E&CA-Products Phone: + 1-914-609-0386, e-mail: ehill@nexant.com

EMEA:

Anna Ibbotson, Director, NexantECA Subscriptions Phone: +44-207-950-1528, aibbotson@nexant.com

Asia:

Chommanad Thammanayakatip, Managing Consultant, Energy & Chemicals Advisory Phone: +66-2793-4606, email: chommanadt@nexant.com

NexantECA (www.nexantECA.com) is a leading management consultancy to the global energy, chemical, and related industries. For over 38 years, NexantECA has helped clients increase business value through assistance in all aspects of business strategy, including business intelligence, project feasibility and implementation, operational improvement, portfolio planning, and growth through M&A activities. NexantECA has its main offices in White Plains (New York), and London (UK), and satellite offices worldwide.

Copyright © by NexantECA 2021. All Rights Reserved.

